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Supervisor’s Foreword

One of the most important problems of present particle theory is the naturalness
of the Higgs mass and the cosmological constant. Before the results of the Large
Hadron Collider (LHC), many physicists expected that at least the naturalness of the
Higgs mass could be explained by supersymmetry. However, contrary to this
expectation, the LHC has discovered the absence of low-energy supersymmetry,
which suggests that the naturalness should be explained by some mechanism that is
not in the conventional field theory. In this thesis, Yuta Hamada has examined the
naturalness problem from two sides. One is so to speak a bottom-up approach, in
which the behavior of the Higgs potential near the Planck scale is analyzed using
the recent experimental data. The other is so to speak a top-down approach, in
which the effects of quantum gravity, especially those of the topology change of
space–time, are investigated. First, it is shown that the standard model (SM) is valid
up to the Planck scale without introducing additional particles. In fact the bare
parameters have been calculated as a function of the cutoff scale from the newest
experimental data for the Higgs mass, top quark mass, and the gauge couplings.
Here it is crucial to distinguish the physical top quark mass from the Monte Carlo
parameter used in experimental analyses. Then the result of the calculation tells us
that the vacuum is stable and that all the bare parameters are finite if the cutoff scale
is smaller than the Planck scale. Furthermore, it is shown that the bare Higgs
potential becomes zero if the cutoff scale is close to the Planck scale. In fact, three
quantities, the bare Higgs mass, the bare Higgs self-coupling, and the beta function
of the Higgs self-coupling, become zero simultaneously around the Planck scale.
Surprisingly, this phenomenon was already predicted by Froggatt and Nielsen in the
middle nineties. Their argument is based on a rather non-standard principle called
the multiple-point criticality principle, whose real origin is not clear at present.
However, we can show that it indeed arises in various theories that involve a slight
modification of the ordinary field theory such as Coleman’s wormhole mechanism.
This phenomenon has a major significance not only in particle physics but also in
cosmology. Yuta has picked up two interesting subjects in this direction. One is the
so-called Higgs inflation. He discusses the fact that the realistic parameters of the
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inflation of the early universe can be naturally explained by the SM because the
Higgs potential is sufficiently flat around the Planck scale due to the phenomenon.
The other is the mass of the dark matter. Interestingly, rather strong upper and lower
bounds on it are obtained if one assumes that the stability and the flatness of the
Higgs potential are not violated by the dark matter. Then Yuta discusses various
mechanisms for solving the naturalness problem including the origin of the flatness
of the Higgs potential. By refining Coleman’s wormhole mechanism for space–time
with the Minkowski signature, one obtains what may be called the maximum
entropy principle, that is, the parameters of the theory are tuned by themselves to
maximize the entropy of the universe. Yuta has applied this principle to various
parameters in the SM. First of all, if one accepts the Higgs inflation, the flatness
of the Higgs potential can be explained because a flat potential produces a large
e-fold number of inflation and makes the entropy of the universe very large. He
further has examined the validity of the principle for various parameters of the SM
such as the Fermi constant and the strong CP phase. It has turned out that the
couplings predicted by the principle qualitatively agree with the observed values,
but there are significant discrepancies. In this thesis Yuta has examined various
aspects of the naturalness problem. He has discovered the rather mysterious coin-
cidences in the Higgs potential around the Planck scale. He also has tried to explain
it by finding a new mechanism that arises naturally in quantum gravity. Although
no complete theory has been found so far, he has obtained many interesting results
that indicate the future direction of particle physics.

Kyoto, Japan
April 2016

Prof. Hikaru Kawai
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Chapter 1
Introduction

1.1 Overview

The discovery of the Higgs boson in 2012 [1, 2] at the large hadron collider (LHC)
makes a big impact on the standard model (SM), which determines the finial para-
meters of the SM. Now the existence of a fundamental scalar is established and the
SM has been completed. The next step is to figure out the physics behind the SM.

To accomplish this purpose, another observation in the LHC would be important:
there is no evidence of the beyond SM physics. In other words, no new particles
are discovered. Before the running of the LHC, the beyond SM physics appears
soon from the point of view of the hierarchy problem unless the mass of the Higgs
boson is unnaturally small. Such candidates are, for example, supersymmetry, extra
dimension and compositeness, which solve hierarchy thanks to new symmetry or
dynamics. The fact that we do not find new physics up to 1TeV scale may imply that
our understanding about field theory is not complete, or we have to consider beyond
the ordinary field theory in order to solve this problem.Moreover, the smallness of the
cosmological constant requires more severe fine-tuning than that of the Higgs mass.
We also do not know the solution to the strong CP problem. This is the problem that,
in principle, the P and CP can be broken in the quantum chromodynamics (QCD)
sector by F F̃ term, in addition to the usual CP violation in Yukawa sector, but nature
does not choose absence of CP violation in QCD sector.

Taking above situations into account, we investigate the following two subjects
in the thesis. First is to examine the theoretical consistency of the SM with arbitrary
cutoff scale �, and to check whether the SM is valid up to the string/Planck scale,
which is the scale of the quantum gravity.We perform this calculation at the two loop
level. In particular, we perform the two loop calculation of the bare Higgs mass.

As a result of the analysis of the renormalization group, it is found that there is
another vacuum around the string/Planck scale which is degenerate in energy with
the electroweak one, depending on the value of the top quark mass. This would
be related to the Planck scale physics. There are some mechanisms which may
be behind this degeneracy. For example, multiple point criticality principle (MPP)

© Springer Nature Singapore Pte Ltd. 2017
Y. Hamada, Higgs Potential and Naturalness After the Higgs Discovery,
Springer Theses, DOI 10.1007/978-981-10-3418-3_1
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2 1 Introduction

[3–5] proposed by Froggatt and Nielsen explains the degeneracy by starting from
not the canonical ensemble, but the micro-canonical ensemble. The other arguments
are the asymptotic safety [6, 7], the hidden duality and symmetry [8, 9], the classical
conformality [10–20] and the eternal topological Higgs inflation [21, 22].

Second is to look for a new solution to the naturalness problem. The new solution
should be consistent with non-observation of the new physics at the LHC. However,
if we believe the argument of the ordinary local field theory, in order to solve the
fine-tuning problem of the Higgs mass, we need new physics around the TeV scale.
Therefore, we should be beyond the ordinary local field theory. In this thesis, we
consider the baby universe theory originally proposed by Coleman. The integration
of the wormhole configuration gives rise to non-local interaction from the view point
of large universe, which makes the parameter in the theory dynamical variable. The
resultant low energy effective action is not given by usual local action, but given
by the multi-local action, multiplication of the local action. We consider the Lorentz
version of thismechanism, and try to solve the naturalness problem of theHiggsmass
as well as the cosmological constant problem and strong CP problem. Furthermore,
we show that this mechanism can also explain the degeneracy of the Higgs potential.

Despite the triumph of the SM, there remains a few things which can not be
explained within the SM, one of which is the existence of the dark matter of the
universe. Taking into account the success of the minimal SM, it seems that the
inclusion of the dark matter to the SM may be achieved not by radical modification
of SM such as supersymmetry, but by the simple extension of the SM. As a simple
model, we consider the singlet and weakly interacting dark matter, and investigate
their impact on the Higgs potential.

1.2 Organization of the Thesis

This thesis is organized as follows. In Chap.2, we calculate the bare parameters
at the Planck scale, and show that there exists triple coincidence if the top quark
mass is around 170GeV: all the bare Higgs mass, Higgs quartic coupling and its
beta function take zero around the string/Planck scale. In Chap. 3, we investigate a
phenomenological implication of the Higgs flat potential around the Planck scale.
The Higgs inflation with flat potential drastically changes the prediction of the con-
ventional Higgs inflation. In Chap.4, we revisit the notorious problem of the SM, the
fine-tuning of the Higgs mass. It turns out that the topological changing fluctuation
of the spacetime metric can affect the fine-tuning of the parameters in the SM. We
show that the Fermi constant, θ parameter and Higgs quartic coupling are indeed
fixed around the real value. In Chap. 5, we consider the possible dark matter in the
desert picture, and examine the relation between the Higgs potential and the dark
matter. In Chap.6, we summarize our results. In Appendix A, we fix the notations
we use in the thesis. In Appendix B, the renormalization group equations (RGE) of
simple extensions of the SM are shown. In Appendix C, we briefly review the infla-
tion paradigm. In Appendix D, we summarize the strong CP problem and its possible

http://dx.doi.org/10.1007/978-981-10-3418-3_2
http://dx.doi.org/10.1007/978-981-10-3418-3_3
http://dx.doi.org/10.1007/978-981-10-3418-3_4
http://dx.doi.org/10.1007/978-981-10-3418-3_5
http://dx.doi.org/10.1007/978-981-10-3418-3_6


1.2 Organization of the Thesis 3

solution. In Appendix E, the quantization of Majorana field is written. This is needed
when we treat the neutrino or Majorana fermion dark matter. In Appendix F, the
integration appeared in Chap.4 is evaluated.
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Chapter 2
Bare Parameters at Cutoff Scale

Abstract The discovery of the Higgs boson determines the last parameter in the
SM, the Higgs self coupling λ. This allows us to extrapolate the SM up to very high
scale such as the string/Planck scale. In this chapter, we calculate the bare parameters
as functions of the cutoff scale �, and check the theoretical consistency, instability
and perturbatively. Especially, we focus on the structure of the Higgs potential. In
Sect. 2.1, we present the effective potential of the SM. In Sect. 2.2, we calculate the
quadratic divergent part of the bare Higgs mass at the two loop level. In Sect. 2.3,
we give the numerical estimation of bare parameters as functions of the cutoff scale.
In Sect. 2.4, we give the relation between bare couplings and MS ones. In Sect. 2.5,
we discuss the effect of the graviton on bare parameters. In Sect. 2.6, we comment
on the metastability issue of the electroweak vacuum.

2.1 The Standard Model Effective Potential

In order to discuss the Higgs potential precisely, we need to calculate the loop cor-
rection of the Higgs potential. The general one loop potential [1] in MS scheme is
given by [2]

V =
∑

n

(−1)2sn (2sn + 1)
1

64π2
m4

n

(
log

m2
n

μ2
+ a

)
, (2.1)

where a = −3/2 for spin sn = 0, 1/2 and a = −5/6 for spin sn = 1 with mn being
effective mass. The summation is taken over real scalars, two component fermions
and vectors.

Then, in the Landau gauge, Coleman-Weinberg potential of the SM Higgs is
calculated as

Vtree = e4�(ϕ) λ(μ)

4
ϕ4, (2.2)

V1−loop = e4�(ϕ)

{
− 3Mt (ϕ)4

16π2

(
ln

Mt (ϕ)2

μ2
− 3

2
+ 2�(ϕ)

)

© Springer Nature Singapore Pte Ltd. 2017
Y. Hamada, Higgs Potential and Naturalness After the Higgs Discovery,
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+ 6MW (ϕ)4

64π2

(
ln

MW (ϕ)2

μ2
− 5

6
+ 2�(ϕ)

)
+ 3MZ (ϕ)4

64π2

(
ln

MZ (ϕ)2

μ2
− 5

6
+ 2�(ϕ)

) }
,

(2.3)

�(ϕ) =
∫ ϕ

Mt
γ d ln μ, (2.4)

γ = 1

(4π)2

(
9

4
g22 + 3

4
g2Y − 3y2t

)
, (2.5)

where ϕ is the field value of the Higgs, H = ϕ/
√
2, MW (ϕ) = g2ϕ/2, MZ (ϕ) =√

g2Y + g22 ϕ/2, and Mt (ϕ) = ytϕ/
√
2.

From above expression, we can define the effective quartic coupling of the Higgs
potential as follows.

λeff (ϕ, μ) = e4�(ϕ)λ(μ) + e4�(ϕ) 1

16π2

[
− 3y4t

(
ln

y2t ϕ2

2μ2
− 3

2
+ 2�(ϕ)

)

+ 3g42
8

(
ln

g22ϕ2

4μ2
− 5

6
+ 2�(ϕ)

)
+

3
(
g2Y + g22

)2

16

⎛

⎝ln

(
g2Y + g22

)
ϕ2

4μ2
− 5

6
+ 2�(ϕ)

⎞

⎠
]
.

(2.6)

The two loop formula is given in Ref. [3], and we use it for our analysis.

2.1.1 Scheme Independence of the Coleman-Weinberg
Potential

In this section, we comment on the scheme independence of the Coleman-Weinberg
potential by taking φ4 theory Lagrangian as an example,

L = 1

2
(∂μφ)2 − 1

2
m2φ2 − λ

4!φ
4. (2.7)

The Coleman-Weinberg potential is

−iV1−loop = −1

2

∫
dd p

(2π)d
log

(
−p2 + λϕ2

2

)

= − i

2

∫
dpE

�d p
d−1
E

(2π)d
log

(
p2E + λϕ2

2

)
, (2.8)
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where �d = 2πd/2/�(d/2). Then, we have

V1−loop = 1

�( d2 )

1

2

∫
dp2E

(p2E )d/2−1

(4π)d/2
log

(
p2E + λϕ2

2

)

= 1

�( d2 )

1

2

1

(4π)d/2

2

d

(
(p2E )d/2 log

(
p2E + λϕ2

2

) ∣∣∣∣
∞

0

−
∫

dp2E
(p2E )d/2

p2E + λϕ2

2

)

= − 1

�( d2 )

1

2

1

(4π)d/2

2

d

(
λϕ2

2

)d/2 ∫
dx

xd/2

1 + x

= − 1

�( d2 )

1

2

1

(4π)d/2

2

d

(
λϕ2

2

)d/2 ∫
dyyd/2(1 − y)−1−d/2

= −1

2

1

(4π)2−ε

2

d

(
λϕ2

2

)2−ε
d

2
�

(
−d

2

)

= −1

2

1

(4π)2

(
λϕ2

2

)2 (
1 + ε log(4π) − ε log

(
λϕ2

2

)) 1
ε
− γ

(−2 + ε)(−1 + ε)

= 1

64π2

(
λϕ2

2

)2 (
−1

ε
+ γ − log(4π) + log

(
λϕ2

2

)
− 3

2

)
. (2.9)

In the MS and MS schemes, the divergence is subtracted as follows.

−1

ε
→ − log(μ2) (MS scheme)

−1

ε
+ γ − log(4π) → − log(μ2) (MS scheme). (2.10)

Therefore, Coleman-Weinberg potential becomes

V = Vtree + V1−loop

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ4

4!
{
λMS + 3

32π2
(λMSϕ

2)2
(
log

(
λMSϕ

2

2μ2

)
+ γ − log(4π) − 3

2

)}
for MS

ϕ4

4!
{
λMS + 3

32π2
(λMSϕ

2)2
(
log

(
λMSϕ

2

2μ2

)
− 3

2

)}
for MS

(2.11)

In order to compare λMS and λMS, let us calculate four point function with external
momentum (p1 + p2)2 = (p1 + p3)2 = (p1 + p4)2 = P2:
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〈φ(p1)φ(p2)φ(p3)φ(p4)〉 = − iλ + (−iλ)2

2
με

∫
ddk

(2π)d

i2

k2(P + k)2
× 3

= − iλ + 3

2
iλ2με

∫ ∫
dx

ddlE
(2π)d

1

(l2E − x(1 − x)P2)2

= − iλ + 3

32π2
iλ2

(
1

ε
− γ + log(4π) + log

(
μ2

−x(1 − x)P2

))
.

(2.12)

Then, we obtain

λMS = λMS − 3

32π2
λ2
MS

(γ − log(4π)). (2.13)

Substituting Eq. (2.13) into Eq. (2.11), we can see that effective potential in MS and
that in MS are the same.

2.1.2 How to Calculate the Beta Function

This part is based on Refs. [4, 5]. In the previous sections, we have seen that we need
the beta function and gamma function in order to evaluate the effective potential.
We review the calculation of these functions using the dimensional regularization,
namely d = 4−2ε. Then, requiring that FμνFμν , ψ̄i∂μγ

μψ and ψ̄i Aμγ
μψ have same

dimension, we can fix the dimension in unit of momentum as [Aμ] = 1, [ψ] = 3/2,
and overall 1/g2B factor has dimension [1/g2B] = d−4 = 2ε. Hence, we parameterize
gB as

gB = μ̄ε Z̄gg, (2.14)

where

μ̄ = μ√
4π

eγE . (2.15)

Here γE is the Euler constant. This corresponds to the usual one loop subtraction
of (1/ε − γE + log(4π))/(4π)2, which can be found in the elementary textbook of
quantum field theory like Ref. [6].

By using this μ, the renormalization of the coupling constant is

gB = μεZgg, Zg = 1 +
∞∑

i=1

Z (i)
g (g)

εi
. (2.16)

The dimensional analysis tells us that Z (i)
g (g) depends on μ only through g(μ).

We also note that Eq. (2.16) does not contain ε0, ε1, . . . terms. This corresponds to
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the choice of the counter term in the scheme, and therefore this is nothing but the
definition of MS scheme.

The definition of the beta function is

βg = μ
∂

∂μ
g. (2.17)

The partial derivative means that gB and ε are fixed.
From the definition, we have

βg = μ
∂

∂μ

(
μ−εZ−1

g gB
) = −εg − gβg

∂

∂g
log Zg, (2.18)

which becomes
(

βg + εg + gβg
∂

∂g

)
Zg = 0. (2.19)

We substituting Eq. (2.16) into this, and put ansatz on βg = ∑i=N
i=0 β(i)

g εi , where
N is some finite number. Then it turns out that

β(i)
g = 0, (2 ≤ i ≤ N )

β(1)
g = −g,

β(0)
g = −gβ(1)

g

∂

∂g
Z (1)

g . (2.20)

Hence, in order to calculate the beta function in MS scheme, we take the simple pole
of ε in Zg:

lim
ε→0

βg = g2
∂

∂g
Z (1)

g . (2.21)

The similar derivation is applicable to the gamma function. From the definition,

γφ = 1

2
μ

∂

∂μ
log Zφ, (2.22)

we can derive
(

βg
∂

∂g
− 2γ

)
Zφ = 0, (2.23)
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where Zφ is the wavefunction renormalization of a scale field φ, φB = √
Zφφ. As a

result, we obtain

γφ = −1

4
g

∂

∂g
Z (1)

φ . (2.24)

A few comments on the properties of the beta and gamma functions are in order.

1. The coefficients of O(g3),O(g5) terms in the beta function and O(g3) term in
gamma function are independent of the scheme.
This can be seen by starting from the given beta function of some scheme,

βg = b0g
3 + b1g

5 + O(g7). (2.25)

Let us calculate the beta function in different scheme, β′
g′ := μ∂μg

′. Here
g′ = g + ag3 + O(g5) is taken.1 β′

g′ becomes

β′
g′ = βg

dg′

dg

= (b0g
3 + b1g

5 + O(g7))(1 + 3ag2 + O(g4))

= b0g
′3 + b1g

′5 + O(g′7). (2.26)

2. The zero of the beta function, β(g∗) = 0, is independent of the scheme.
If the beta function vanishes at g = g∗ in some scheme, β′

g′(g′(g = g∗)) also
does:

β′
g′(g′(g = g∗)) = βg(g∗)

dg′

dg
= 0. (2.27)

Therefore, the existence of a fixed point is scheme independent.

3.
dβ

dg
at g = g∗ is independent of the scheme.

dβ′
g′

dg′ = dβg

dg
+ ∂g

∂g′ βg(g∗)
∂2g′

∂g2
= dβg

dg
. (2.28)

This independence is importance because dβ/dg determines the flow around a
fixed point. This means that the critical exponent is scheme independent quantity.

4. The leading term of γφ is independent of the scheme.
We write a relation between the wavefunction renormalization as

Z ′
φ(g

′) = Zφ(g)Fφ(g), Fφ(g) = 1 + O(g2) (2.29)

1In general, scale μ′ can also be different from μ. Here we assume that μ′ ∝ μ.
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For some scheme, γφ(g) = c0g2 + O(g4), then

γ′
φ(g

′) = 1

2
μ

∂

∂μ
log(Zφ(g)Fφ(g))

= γφ(g) + 1

2
βg

∂

∂g
log Fφ(g)

= c0g
2 + O(g4). (2.30)

5. γφ(g) = γ′
φ(g

′) at a fixed point, βg(g∗) = 0.
This is obvious from the Eq. (2.30).

The leading contribution in beta function and gamma function corresponds to
the summation of the leading logarithm. The renormalization group equation for the
one-particle irreducible Green function �(n) is

(
μ

∂

∂μ
+ βg

∂

∂g
− nγφ

)
�(n) = 0. (2.31)

By introducing t := log(μ/Q) where Q is some pivot scale, we have

∂

∂t
�(n)(t, g) =

(
βg

∂

∂g
− nγφ

)
�(n). (2.32)

Formally we can solve it, and obtain

�(n)(t, g) = exp

[
t

(
βg

∂

∂g
− nγφ

)]
�(n)(0, g)

=
∑

m

1

m!
(
log

μ

Q

)m (
βg

∂

∂g
− nγφ

)m

�(n)(0, g) (2.33)

The point is that the mass independent scheme such as MS, β and γ does not have
explicit dependence of μ.

The inclusion of leading term of the beta and gamma function corresponds to
the summation of leading log. The next-to-leading, next-to-next-leading, . . . terms
correspond to next-leading log, next-to-next-leading log, . . ., respectively.

2.2 Bare Higgs Mass at the Two Loop

In the following, we will estimate the bare parameters of the SM, and check the
theoretical consistency. To compute the bare parameters is important because these
are inputs for numerical consideration of the cutoff scale physics such as string theory.
There are two kinds of the bare parameters, dimensionless coupling and dimensionful
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one. The dimensionless couplings are the gauge couplings, Yukawa couplings and
Higgs self coupling, while dimensionful coupling is the bare Higgs mass. As we will
see in Sect. 2.4, the dimensionless couplings are well approximated by MS ones.
On the other hand, the bare Higgs mass needs extra computations. In this section,
we calculate the bare Higgs mass at the two loop level. See Refs. [7–11] for related
topic. The dominant part of the bare Higgs mass is the quadratic divergence, so we
focus on this part, and calculate it by a cutoff scheme. We have performed the two
loop level calculation, and obtain the bare mass as follows:

m2
B, 1−loop = −

(
6λB + 3

4
g2Y B + 9

4
g22B − 6y2t B

)
I1, (2.34)

m2
B, 2−loop = −

{
9y4t B + y2t B

(
− 7

12
g2Y B + 9

4
g22B − 16g23B

)

− 87

16
g4Y B − 63

16
g42B − 15

8
g2Y Bg22B

+ λB
(−18y2t B + 3g2Y B + 9g22B

) − 12λ2
B

}
I2. (2.35)

Here I1 and I2 are quadratic divergent loop integrals,

I1 :=
∫

d4 pE
(2π)4

1

p2E
, (2.36)

I2 :=
∫

d4 pE
(2π)4

d4qE
(2π)4

1

p2Eq
2
E (pE + qE )2

, (2.37)

yt B ,λB , g3B , g2B and gY B are bare topYukawa, bareHiggs self coupling, bare SU (3)C
coupling, bare SU (2)L coupling and bare U (1)Y coupling, respectively.

The vanishing bare Higgs mass condition at the one loop is nothing but Veltman
condition [8]. In the computation, we take the physical Higgs mass to be zero and
work in symmetric phase. This is because the dimensional analysis tells us that the
quadratic divergent part is same both in symmetric phase and broken phase, and
is independent of physical Higgs mass. In addition, Landau gauge is taken. The
use of Landau gauge drastically reduces the number of Feynman diagram. In Landau
gauge, the following class of diagramvanishes since three point coupling is derivative
coupling, and external momentum is zero:

(2.38)
In Figs. 2.1 and 2.2, we show non-vanishing diagrams and their contributions.
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Fig. 2.1 g4 terms in m2
B, 2−loop in units of I2

Fig. 2.2 The terms other than g4 in m2
B, 2−loop in units of I2
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In order to fix the ratio of I1 and I2, the cutoff scheme should be specified. In this
thesis, we take proper time regularization:

∫
d4kE

1

k2E
=

∫ ∞

ε

dα

∫
d4kE e

−αk2E , (2.39)

By employing this regularization, the one loop and two loop integrals are calcu-
lated as

I1 = 1

ε

1

16π2
,

I2 =
∫

d4k

(2π)4

d4 p

(2π)4

1

k2 p2(p + k)2

=
∫ ∞

ε

dα

∫ ∞

ε

dβ

∫ ∞

ε

dγ
d4k

(2π)4

d4 p

(2π)4
e−αp2−βk2−γ(p+k)2

=
∫ ∞

ε

dα

∫ ∞

ε

dβ

∫ ∞

ε

dγ
π4

(2π)8

1

(αβ + βγ + γα)2

= 1

ε

∫ ∞

1
dα′

∫ ∞

1
dβ′

∫ ∞

1
dγ′ π4

(2π)8

1

(α′β′ + β′γ′ + γ′α′)2

= 1

ε

1

(16π2)2
ln

26

33
� 0.005 I1. (2.40)

Here α′ = ε α, α′ = ε β and α′ = ε γ. If we employ the usual momentum cutoff, we
obtain

I1 = �2

16π2
, (2.41)

which implies the relation 1/ε = �2. We note that the ratio Eq. (2.40) depends on
the cutoff scheme. However, in the next section, we will show that the two loop effect
is small, and therefore we can safely neglect the cutoff scheme dependence.

2.3 Bare Parameters at the Cutoff Scale

In this section, we numerically solve the renormalization group equations (RGEs),
and evaluate the bare parameters at the cutoff scale. The values of SM couplings at
the electroweak scale are given in Ref. [3]:

g2(Mt ) = 0.64822 + 0.00004

(
Mt

GeV
− 173.10

)
+ 0.00011

(
MW − 80.384GeV

0.014GeV

)
, (2.42)
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gY (Mt ) = 0.35761 + 0.00011

(
Mt

GeV
− 173.10

)
+ 0.00021

(
MW − 80.384GeV

0.014GeV

)
, (2.43)

g3(Mt ) = 1.1666 + 0.00314

(
αS(MZ ) − 0.1184

0.0007

)
− 0.00046

(
Mt

GeV
− 173.10

)
, (2.44)

yt (Mt ) = 0.93558 + 0.00550

(
Mt

GeV
− 173.10

)
− 0.00042

(
αS(MZ ) − 0.1184

0.0007

)

− 0.00042

(
MW − 80.384GeV

0.014GeV

)
± 0.00050th, (2.45)

λ(Mt ) = 0.12711 + 0.00206

(
MH

GeV
− 125.66

)
− 0.00004

(
Mt

GeV
− 173.10

)
± 0.00030th.

(2.46)

The RGE of the SM at two loop level is in Appendix B. The mass of the Higgs
boson is

MH = 125.09 ± 0.24GeV (2.47)

at the 1σ by Particle Data Group [12]. The SU (3)C gauge coupling is

αS(MW ) = 0.1185 ± 0.0006GeV. (2.48)

We note that the current error of the value of the top mass:

Mpole
t =

{
171.2 ± 2.4GeV, MITP [13],
176.7+4.0

−3.4 GeV, PDG [14], (2.49)

MPythia
t =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

173.21 ± 0.51 ± 0.71GeV, direct measurement, PDG [14],
174.98 ± 0.76GeV, D0 [15],
174.34 ± 0.64GeV, D0+CDF [16],
173.34 ± 0.76GeV, ATLAS [17],
172.38 ± 0.10 ± 0.65GeV, CMS [18].

(2.50)

As we can see, there are two types of top masses, Mpole
t and MPythia

t . MPythia
t is

measured by usingMonte Carlo simulation. The experiment observes themomentum
of the color singlet decay product of t t̄ , and compares with the event shape of Monte
Carlo simulation. The problem is that we do not know the relation between MPythia

t

and MS parameters, which is important for renormalization group (RG) evolution.
Moreover, MPythia

t inevitably suffers from uncertainty of hadronization.
On the other hand, Mpole

t is defined as a pole of two point function of the top
field. At least perturbatively, Mpole

t is well defined, and can be written by using MS
couplings. Therefore, we use Mpole

t in the thesis. Mpole
t is measured from inclusive

cross section of t t̄ , σ(pp → t t̄ X) at the LHC. We can see that Mpole
t still has large
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uncertainty. As we will see, in order to discuss the criticality of the SM precisely,
the error of Mt should become small.

The way of precision measurement of the top mass is the threshold scan of the
toponium state, which can be done by, e.g. international linear collider (ILC) inwhich
initial energy of electron and positron is controlled. In the ILC, the error of top mass
is estimated as O(10–100)MeV. In the following, we take

Mpole
t = 171.2 ± 2.4GeV (2.51)

as a reference value.
Then let us move on numerical calculation. We plot the running of bare para-

meters in the left panel of Fig. 2.3. The largest uncertainty comes from the error of
the top mass Eq. (2.51), we represent it as bands. Surprisingly, we can find triple
coincidence if the top quark mass is 170 GeV: the Higgs self coupling λ, its beta
function βλ and bare Higgs mass take zero around the string/Planck scale. Figure2.4

gY

g2

g3
yt

mB
2 I1

5 10 15 20

0.0

0.5

1.0

1.5

2.0

Log10 GeV

Fig. 2.3 Left The bare parameters as functions of the cutoff scale � as well as the beta function of
λ. The band corresponds to the two sigma deviation of the top mass, Eq. (2.51). Right The triple
coincidence occurs if Mt = 170 GeV

Fig. 2.4 The light blue band
is RGE running of λeff (μ).
λeff (μ) is defined by two
loop effective potential, and
we have used 2 loop RGE.
The dark blue band is the
beta function multiplied by
ten, 10 × dλeff/d ln μ.
MH = 125.09 GeV and
αs = 0.1185 are taken. The
band corresponds to 95% CL
deviation of Mt

eff

10 d eff d ln

5 10 15 20
0.05

0.00

0.05

0.10

Log10 GeV

ef
f
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124.4 124.6 124.8 125.0 125.2 125.4 125.6 125.8

170.5

171.0

171.5

124.4 124.6 124.8 125.0 125.2 125.4 125.6 125.8
18.2

18.3

18.4

18.5

18.6

18.7

Fig. 2.5 Left: Mt realizing λmin = 0 as a function of MH . We use the two loop RGE and effec-
tive potential. The light green band and dotted line correspond to 95% deviation of αs and MH ,
respectively. Right The scale μmin that realizes λmin = 0

5 10 15 20 25
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Log10 GeV

m
B I 1

164 166 168 170 172 174 176 178

15

20

25

Mt GeV

Lo
g 1

0
m
B
2

0

Fig. 2.6 Left The bare Higgs mass as a function of �. The band corresponds the deviation of the
top mass at 95% C.L. Right The scale where the bare Higgs mass takes zero as a function of Mt

is the enlarged view of the effective self coupling λeff and its derivative as functions
of the renormalization scale μ. The band is same as Fig. 2.3. In the left panel of the
Fig. 2.5, Mt realizing λmin = 0 as a function of MH is plotted. In the right panel,
we can see the scale μmin that realizes λmin = 0. From this we can see that the two
loop effect is small. In Fig. 2.6, we show the bare Higgs mass as a function of the
cutoff scale � at the two loop level. The right panel represents the scale where the
bare mass vanishes. The dashed and solid lines correspond to one-loop and two-loop
calculations, respectively. We can see that the two loop effect is small, as we noted
before. The bare mass and the self coupling at the Planck scale is shown in Fig. 2.7,
as well as the beta function of the self coupling. It can be seen that there is three coin-
cidence. The bare mass, self coupling and its beta function simultaneously become
zero if the top quark mass is around 170GeV.
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Fig. 2.7 The blue solid
(dashed) line corresponds to
the one-plus-two-loop
(one-loop) bare mass m2

B
(m2

B, 1−loop) in units of

M2
P/16π2 for � = MP . For

comparison, we also plot the
quartic coupling λ at the
Planck scale with the red
dotted line. The central
values αs(mZ ) = 0.1185 and
mH = 125.9 GeV are used

MP

mB
2

MP
2 16 2 mB,1 loop

2

MP
2 16 2

100 MP

164 166 168 170 172 174 176 178

0.2

0.0

0.2

0.4

0.6

Mt GeV

2.4 The Relation Between Dimensionless Bare Couplings
and MS Couplings

We have approximated the bare couplings byMS ones. In this section, we present the
justification of this approximation. The relation between dimensionless bare coupling
andMS coupling can be obtained by calculating a physical quantity. Here we present
the relation inφ4 theory by performing the one loop integral of the four point function
〈φ(p1)φ(p2)φ(p3)φ(p4)〉. As there is no wavefunction renormalization at the one
loop level, we can take φB = φ. The one loop calculation in the MS scheme can be
found in Eq. (2.12). In the momentum cutoff scheme, we get

− iλB + (−iλB)2

2

∫
d4k

(2π)4

i2

k2(P + k)2
× 3

= − iλB + 3

2
iλ2

B

∫ �2

0

∫ 1

0
dx

d4lE
(2π)4

1

(l2E − x(1 − x)P2)2
. (2.52)

Taking P2 = −�2, we obtain

〈φ(p1)φ(p2)φ(p3)φ(p4)〉 = −iλB + 3

32π2
iλ2

B

log(161 + 72
√
5)

2
√
5

� −iλB + 0.01 × iλ2
B . (2.53)

Finally we have

−iλ(μ) + 3

32π2
iλ(μ)2

(
log

(
μ2

�2

)
− 2

)
= −iλB + 3

32π2
iλ2

B

log(161 + 72
√
5)

2
√
5

,

(2.54)
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and the relation between bare and MS coupling can be derived as

λB = λ(�) − 3

32π2
iλ(�)2

(
2 + log(161 + 72

√
5)

2
√
5

)
. (2.55)

Now we have confirmed that the difference between two couplings are very small,
and the approximation λB � λ(�) is justified.

Now let us evaluate the effect of above approximation on the scale where the bare
Higgs mass vanishes. The relation between the bare and MS coupling in the SM is
generally written as

λi
MS

(μ) = λi
B +

∑

jk

ci jk(μ/�) λ
j
Bλk

B + O(λ3
B), (2.56)

ci jk(x) := f i jk + bi jk ln x + O(x2), (2.57)

where bi jk represents the one loop coefficient of the beta function, f i jk represents
the finite correction and λi

B represent (
{
g2Y B, g22B, g23B, y2t B,λB

}
). Since the all SM

couplings are perturbative up to the Planck scale, we have

μ � �,

∣∣∣∣∣
λi
MS

16π2
ln(μ/�)

∣∣∣∣∣ � 1, (2.58)

and therefore

λi
MS

(μ) = λi
B +

∑

jk

(
f i jk + bi jk ln

μ

�

)
λ
j
Bλk

B, (2.59)

is the good approximation. On the other hand, the scale dependence of MS coupling
can be written by using beta function,

λi
MS

(�) = λi
MS

(μ) +
∑

jk

bi jkλ j
MS

(μ)λk
MS

(μ) ln
�

μ
, (2.60)

at one loop level. Combining Eqs. (2.59) and (2.60), we obtain the following formula:

λi
MS

(�) = λi
B +

∑

jk

f i jkλ j
Bλk

B . (2.61)

This is generalization of Eq. (2.55).
As a result, the correction to the bare Higgs mass is given by

�m2
B =

⎛

⎝aiλi
MS

(�) −
∑

i jk

ai f i jkλ j
MS

(�)λk
MS

(�)

⎞

⎠ I1, (2.62)
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Here ai is the coefficient of the one loop bare mass. We denote the scale where the
bare mass without correction vanishes by �0,

aiλi
MS

(�0) = 0. (2.63)

Then, the scale where the corrected bare mass takes zero becomes

�|m2
B=0 := eδt�0, δt =

∑
i jk a

i f i jkλ j
MS

(�0)λk
MS

(�0)
∑

i jk a
i bi jkλ j

MS
(�0)λk

MS
(�0)

. (2.64)

Since δt is the order of one, we expect that

0.1 �
�|m2

B=0

�0
� 10. (2.65)

This is the uncertainty coming from the difference between the bare and MS cou-
plings.

2.5 The Effect of the Graviton

Since we consider the scale close to the Planck scale, the effect of the gravitational
interaction may become relevant. Here, we estimate the impact on the bare Higgs
mass from gravity. When we take into the gravity, the action becomes

S 

∫

d4x
√−gLSM. (2.66)

We expand the gμν around the flat space:

gμν = ημν + 1

MP
hμν, (2.67)

where ημν is the flat space metric, diag(+ − −−), and hμν is the fluctuation corre-
sponding to the graviton. It is found that the interaction is

∫
d4x

(
δ

δgμν
(
√−gLSM)

∣∣∣∣
g=η

hμν + 1

2

δ

δgρσ

δ

δgμν
(
√−gLSM)

∣∣∣∣
g=η

hμνhρσ + · · ·
)

=
∫

d4x
√−g

(
T μνhμν + · · · ) . (2.68)

In the second line, we have used the definition of the energy momentum tensor,
Tμν := 1√−g

δ
δgμν

(
√−gLSM).
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The part of Tμν related to the Higgs is given by

Tμν ∼(DμH)†(DνH) + (DνH)†(DμH)

− gμν

(
(DμH)†(DμH) − m2

B H
†H − λB (H†H)2yu Q̄ H̃U + yd Q̄HD + yl L̄H E + h.c.

)
.

(2.69)

Among the terms in Eq. (2.69), only the kinetic term is relevant for one loop calcu-
lation of the bare mass. However, this contribution vanishes since the momentum
of the external line is zero, and there are no correction to the bare mass at the one
loop level. As for the second term in Eq. (2.68), the possible interaction is the type
of hh∂H∂H , which gives no contribution at one loop level.

In general, gravitons give the correction to the Higgs mass of the order of
O(�4/M2

P) at the two loop level. If the theory of gravity is weak coupled, this
contribution is two loop suppressed. For example, in perturbative string theory, the
string coupling, determined by the dilation background, is small and the perturbative
expansion is valid. In this sense, our analysis of the bare Higgs mass is valid taking
into account the gravitational effect. If the physics around the Planck scale is strong
coupled or the cutoff scale becomes much higher than the Planck scale, we can not
neglect the effect of gravitons.

2.6 Metastability of the Electroweak Vacuum

We have seen that our electroweak vacuum is in the critical point, the border between
stable and unstable vacuum. However, in practice, even if the electroweak vacuum
is unstable, there are no problems provided that the lifetime is sufficiently large
compared with the age of the universe. In this case, we call the electroweak vacuum
ismetastable. Therefore, it is phenomenologically important to determine the lifetime
of false vacuum. The way of calculation is developed by Coleman [19].

In the actual calculation, the bounce solution of the Euclidean equation of the
motion plays the crucial role. By using the bounce action S0, the decay rate per unit
volume is

�

V
∼ 1

R4
e−S0 , (2.70)

where R is a typical size of the bounce solution.
At the tree level, the equation of the motion is

− d2

dr2
ϕ − 3

r

d

dr
ϕ + λϕ3 = 0. (2.71)

The boundary condition of the bounce solution is given by

ϕ′(0) = 0, ϕ(∞) = 0, (2.72)
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The solution of the equation is [20]

ϕ(r) =
√

2

|λ|
2R

r2 + R2
, Sbounce = 8π2

3 |λ(μ)| , (2.73)

Note that the action has the scale invariance at the classical level,

ϕ(r) → 1

C
ϕ(Cr). (2.74)

Hence, if ϕ(r) is a solution of the equation, 1
C ϕ(Cr) is also a solution for arbitrary

constantC . This means that, at the classical level, there is huge uncertainty due to the
arbitrary choice of scales R and μ. In order to resolve the situation, the one-loop level
calculation is needed. The resultant one-loop calculation suggests that the tunneling
probability becomes [20]

p ∼ Max
R

1

H 4
0 R

4
exp

(
− 8π2

3 |λ(μ = 1/R)|
)

, (2.75)

where H0 is the current Hubble parameter. Here we have not included the one-loop
correction to the exponent for simplicity. Figure2.8 shows the phase structure of the
SM. We can see that the error of the top mass is larger than that of the Higgs mass,
and that we indeed live in the stable or metastable vacuum depending on the mass
of the top quark.

Fig. 2.8 The phase diagram
of the SM. The upper,
middle and lower region
correspond to unstable,
metastable and stable
electroweak vacuum. The red
and blue circles represent the
1σ and 2σ deviations
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We note that the above estimate is valid when we consider the zero temperature
field theory and vacuum to vacuum transition. The condition of the metastability
becomes severe if we take into account the finite temperature effect or dynamical
evolution of Higgs field during inflation and preheating, although these estimations
highly depend on the assumption of cosmological history. In this sense, Eq. (2.75)
gives conservative condition of metastability of electroweak vacuum.
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Chapter 3
Higgs Inflation and Standard Model
Criticality

Abstract In this chapter, we investigate the possibility that the SM Higgs boson
plays the role of an inflation in light of the discovery of the Higgs boson. In 2007,
Bezurkov and Shaposhnikov first pointed out this possibility. The successful Higgs
inflation is realized if the non-minimal coupling between the Higgs H and scalar
curvatureR, ξ|H |2R, is introduced. ξ is the coupling constant, and very large value,
ξ ∼ 105, is required for successful inflation. However, the observation of the Higgs
and determination of its mass changes the situation. As we have seen in Chap. 2, the
Higgs self coupling and its beta function becomes zero at very high scale, which
means that the Higgs potential is very flat around string/Planck scale. This opens up
the new possibilities of the Higgs inflation, which we will present here. In Sect. 3.1,
we present the general argument of the Higgs inflation above the SM cutoff �. In
Sect. 3.2, we show that non-minimal coupling ξ can be as small as O(10).

3.1 Minimal Higgs Inflation

In the last chapter, we have shown that the Higgs self coupling λ, its beta function
and the bare Higgs mass simultaneously become zero around the string/Planck scale,
which means the Higgs potential,

VSM = 1

4
λeff(μ = ϕ)ϕ4, (3.1)

is very flat at this scale. Here ϕ is the field value of the physical Higgs, H = ϕ/
√
2.

We plot the figure of the Higgs potential in Fig. 3.1 for various top masses. We can
see that the potential actually has plateau.

© Springer Nature Singapore Pte Ltd. 2017
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Fig. 3.1 The Higgs potential
as functions of Higgs field ϕ.
We take MH = 125.09GeV
and αS = 0.1185. We have
used two loop effective
potential and two loop RGE
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3.1.1 Is the Saddle Point Inflation in the SM Possible?

By tuning the topmass or adding Planck suppressed operator, the saddle point, where
the first and second derivative of the potential vanish, appears. The potential is very
flat around the saddle point, and one might be tempted to think that the inflation
can occur here. However, this naive expectation is not true. Strictly speaking, the
exponential expansion of the universe can be realized, but the observed density
perturbation can not be reproduced. In this section, we clarify this point.

For the field value ϕ which is much larger than the electroweak scale, the Higgs
potential can be written as

VSM = λeff(ϕ)

4
ϕ4. (3.2)

Let us expand the λeff around the minimum μmin:

λeff(μ) = λmin +
∞∑

n=2

βn(
16π2

)n
(
ln

μ

μmin

)2

, (3.3)

where βn is the O(1) quantity.
If the λmin is larger than a critical value λc,

λc := β2

(64π2)2
, (3.4)

theHiggs potential ismonotonically increasing function.Whenλmin = λc, the poten-
tial indeed has the saddle point ϕc,

ϕc = e−1/4μmin. (3.5)
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In the following, we assume the existence of the saddle point by tuningλmin or adding
ϕ6,ϕ8, . . . terms. The conclusion does not depend on how to realize the saddle point.
Then, the potential around the saddle point is written as

V (ϕ) = Vc + V ′′′
c

3! δϕ3 + . . . , (3.6)

where δϕ := ϕ − ϕc, the prime represents the derivative with respect to ϕ and the
subscript c indicates that the function is estimated atϕ = ϕc. The slow roll parameter
ε is calculated as

ε = M2
P

8

(
V ′′′
c

Vc

)2

δϕ4 + O(δϕ5). (3.7)

The e-folding number becomes

N∗ = 1

MP

∫ δϕ∗ dδϕ√
2ε

= 2

M2
P

Vc

V ′′′
c

1

|δϕ∗| . (3.8)

Now the density perturbation As can be expressed by N∗, Vc, V ′′′
c by using above

equations.

ε = 2V 2
c

N 4∗ M6
P

(
V ′′′
c

)2 , (3.9)

and we obtain

As = N 4∗ M2
P

(
V ′′′
c

)2

48π2Vc
. (3.10)

In the SM, typical order of Vc and V ′′′
c are estimated as

Vc ∼ 10−6ϕ4, V ′′′
c ∼ 10−5ϕc, (3.11)

and therefore the expected order of As becomes

As � 100

(
N∗
60

)4 (10−6ϕ4
c

Vc

)(
V ′′′
c

10−5ϕc

)2 (0.1MP

ϕc

)2

, (3.12)

which is much larger than the observed value, As ∼ 10−9 [1]. This is why the SM
Higgs cannot be responsible for the cosmic inflation in the early universe.We empha-
size that this conclusion is only valid under the assumption that the SM can be trusted
up to the very high scale.
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3.1.2 Constraints on Mt and �

In principle, it may be possible to realize the flat potential by the new physics such
as string theory above the cutoff scale �. In this section, we examine the general
possibility of the Higgs inflation, and constrain the parameters in the SM.We assume
that the Higgs inflation occurs in the region where the Higgs field value is larger than
the cutoff scale, ϕ > �. Even in this case, we have constraints on the low energy
Higgs potential in order not to prevent the successful inflation.

The potential can be evaluated by the standard calculation of field theory for ϕ <

�. Unless the Higgs potential is the monotonically increasing function, the Higgs
field can not reach the electroweak vacuum after the inflation. This monotonicity
condition gives us

dVSM

dϕ
= 1

4
(βλ + 4λ) ϕ3 > 0, (3.13)

for ϕ < �. Another constraint comes from the constraint on the tensor perturbation,
that is, gravitational wave. The non-observation of the tensor mode puts the upper
bound on the tensor to scalar ratio r , and the height of the SM Higgs potential is
bounded from above:

VSM(�) < Vmax, Vmax � 1065 GeV4
( r

0.1

)
(3.14)

In the Fig. 3.2, we shows the constraint onMt and� in the SM. The larger value of
Mt is excluded because the large top Yukawa coupling induces the instability of the
Higgs potential, while the smaller Mt is excluded because the Higgs self coupling λ
tends to large due to small top Yukawa. One can see that the there is an upper bound
on �, � � 5 × 1017 GeV.

Fig. 3.2 The region
excluded by the value of the
potential (left, red) and by
the monotonicity (right,
blue) in the � versus Mt
plane in order to realize the
flat potential Higgs inflation
within the SM. This figure is
taken from Ref. [12]
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In Chap.2, we have shown that the SM can be valid very high scale which may
be close to the string scale. Interestingly, the upper bound on � is close to the string
scale Ms ∼ 1017 GeV. If the signal of the gravitational wave is detected, the scale of
the inflation is determined. This may be achieved in near future if r is not very small
compared with 0.1.

3.1.3 Log Type Potential

Here we illustrate the possible potential above �. As an example, we take following
log type potential above �.

V = V0 + V1 log
ϕ

�
=: Ṽ0 + V1 log

ϕ

MP
. (3.15)

The motivation of this type of potential is the Coleman-Weinberg potential in the
momentum cutoff scheme,

Veff(ϕ) = m2
B

2
ϕ2 + λB

4
ϕ4 +

∑

i

Ni

2

∫
d4 p

(2π)4
ln

p2 + ciϕ2

p2
, (3.16)

where Ni is the degrees of freedom of particles which couple with the Higgs, and
ciϕ2 represents the mass squared in the presence of the Higgs vacuum expectation
value. We have added the bare cosmological constant term to get Veff(ϕ = 0) = 0,
and omitted small negative ϕ2 term for simplicity. The bare mass is fixed in such a
way that the mass of the Higgs vanishes. To see this, the derivative of the effective
potential with respect to ϕ2 is

dVeff

dϕ2
= 1

2

[
m2

B + λBϕ2 +
∑

i

Ni ci
16π2

(
�2 − ciϕ

2 log
�2 + ciϕ2

ciϕ2

)]
. (3.17)

The mass of Higgs is given by the curvature around the minimum:

m2
R := 2

dVeff

dϕ2

∣∣∣∣
ϕ2→0

, (3.18)

from which we obtain

m2
B = − �2

16π2

∑

i

Ni ci . (3.19)

Now the effective potential becomes

http://dx.doi.org/10.1007/978-981-10-3418-3_2
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Table 3.1 The degrees of freedom, Ni , and the effective mass, ciϕ2, of each particle

i ϕ χ W Z t

Ni 1 3 6 3 −12

ci 3λB λB
g22B
4

g2Y B + g22B
4

y2t B
2

dVeff

dϕ2
= ϕ2

2

[
λB −

∑

i

Ni c2i
16π2

log
�2 + ciϕ2

ciϕ2

]
. (3.20)

For the large field value, ϕ 	 �, we can expand the log term as a power series in
�2/ϕ2, and get

dVeff

dϕ2
→ 1

2

⎡

⎣m2
B + λ2

Bϕ2 + �4

16π2ϕ2

∑

j :c jϕ2	�2

N j

2

⎤

⎦ . (3.21)

By assuming the criticality of the SM, m2
B ∼ λB ∼ 0, then, the effective potential

becomes the log type potential.

Veff → V0 + �4

16π2
log

ϕ

�

∑

j :c jϕ2	�2

N j

2

= V0 − 3�4

32π2
log

ϕ

�
. (3.22)

Here we put the values in Table3.1.
As a result, we have

V (ϕ) = V1

(
C + log

ϕ

MP

)
, (3.23)

with

V1 = − 3

32π2
�4, (3.24)

where C is a constant. The slow roll parameters are calculated as

ε = 1

2

(
MP

ϕ

)2
(

1

C + ln ϕ
MP

)2

, η = −
(
MP

ϕ

)2 1

C + ln ϕ
MP

,

ξ2 = 2

(
MP

ϕ

)4
(

1

C + ln ϕ
MP

)2

, �3 = −6

(
MP

ϕ

)6
(

1

C + ln ϕ
MP

)3

. (3.25)
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The end point of the inflation, ϕend, is determined from the condition,

max
{
ε(ϕend),

∣∣η(ϕend)
∣∣} = 1. (3.26)

Then,

ϕend =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

MP√
2W

(
eC/

√
2
) for 0 < C < 0.153,

√
2

W
(
2e2C

) MP for C > 0.153.

(3.27)

In other words, we have

C =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

MP√
2ϕend

− log
ϕend

MP
for ϕend ≥ √

2MP ,

(
MP

ϕend

)2

− log
ϕend

MP
for ϕend ≤ √

2MP .

(3.28)

HereW is the Lambert function which satisfies x = W (x)eW (x), and the upper bound
onϕend � 1.57MP can be seen from Eq. (3.27). The e-folding number can be written
by ϕ∗ and ϕend,

N∗ = 2C − 1

4

ϕ2∗ − ϕ2
end

M2
P

+ ϕ2∗
2M2

P

ln
ϕ∗
MP

− ϕ2
end

2M2
P

log
ϕend

MP

= ϕ2∗
2M2

P

ln
ϕ∗
ϕend

− ϕ2∗ − ϕ2
end

4M2
P

×
{(

1 − √
2MP/ϕend

)
for ϕend ≥ √

2MP ,
(
1 − 2M2

P/ϕ2
end

)
for ϕend ≤ √

2MP .

(3.29)

The thing we have to do is to express the slow-roll parameters by N∗, which is
achieved by solving Eq. (3.29),

ϕ∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
4N∗ + √

2ϕend − ϕ2
end√

W
(
e−1+√

2/ϕend

(
4N∗ + √

2ϕend − ϕ2
end

)
/ϕ2

end

) for ϕend ≥ √
2MP ,

√
4N∗ + 2 − ϕ2

end√
W
(
e−1+√

2/ϕ2
end
(
4N∗ + 2 − ϕ2

end

)
/ϕ2

end

) for ϕend ≤ √
2MP .

(3.30)
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Fig. 3.3 The slow roll parameters as functions of ϕend. The dotted, dashed and solid lines corre-
spond to N∗ = 40, 50 and 60, respectively
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The slow roll parameters as functions of ϕend and N∗ are obtained by substituting
Eq. (3.30) into Eq. (3.25), which we plot in the Fig. 3.3. We note that the observed
overall amplitude As,obs can be reproduced by taking

V1 = 12π2As,obs M
4
P

(
ϕ∗
MP

)−2 (
C + log

ϕ∗
MP

)−3

. (3.31)

We can also calculate the tensor to scalar ratio, running spectral index and so on.
As a result, we get

0.980−−0.984 > ns > 0.974−−0.979, 0 < r < 0.029−−0.024,

−(4.0−−2.7) × 10−4 >
dns
d ln k

> −(5.3−−3.7) × 10−4, 0 > nt > −(3.7−−3.0) × 10−3,

−(1.6−−0.9) × 10−5 >
d2ns
d ln k2

> −(2.2−−1.2) × 10−5, 0 <
dnt
d ln k

< (8.2−−5.6) × 10−5,

(3.32)

for 50 ≤ N∗ ≤ 60 and 0 < ϕend < 1.57MP . See also Fig. 3.4. These values are
marginally consistent with the recent Planck 2015 data [2], see also Appendix C.

3.2 Higgs Inflation from Standard Model Criticality

In this section, we consider a possible concrete example of the potential beyond �

in the previous general argument.
We introduce the non-minimal coupling ξ between Higgs and Ricci scalar [3–10].

Then, the action becomes

S =
∫

d4x
√−g

{
−M2

P + ξϕ2

2
R + (∂μϕ)2

2
− λ

4
ϕ4

}
. (3.33)

For simplicity, we neglect the Higgs mass term, Yukawa sector and gauge sector.
This frame is called Jordan frame. The ϕ2R term can be eliminated by performing
the redefinition of the metric, ĝμν = �2gμν,�

2 = 1 + ξϕ2

M2
P
. As a result, we have

S =
∫

d4x
√

−ĝ

{
−M2

P

2
R̂ + (∂μχ)2

2
− λ

4

ϕ4

(1 + ξϕ2/M2
P)2

}
. (3.34)

This frame is called Einstein frame. Here, χ is the canonical field in the Einstein
frame, the relation between χ and ϕ is

dχ

dϕ
=
√

�2 + 6ξ2ϕ2/M2
P

�4
. (3.35)
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For the large field value, this becomes simple:

dχ

dϕ
= √

6
MP

ϕ
, (3.36)

from which we have

ϕ = ϕ∗ exp
(

1√
6MP

(χ − χ∗)
)

, (3.37)

where χ∗ and ϕ∗ are integration constants. If we take χ∗ = ϕ∗ = MP√
ξ
and for suffi-

ciently large ξ, then

ϕ � MP√
ξ
exp

(
χ√
6MP

)
, for ϕ 	 MP√

ξ
. (3.38)

Thanks to ξ term, we can obtain flat potential for high field value. FromEq. (3.34),
the potential in Einstein frame U is given by the last term,

U = λ

4

ϕ4

(1 + ξϕ2/M2
P)2

, (3.39)

which becomes constant for ϕ 	 MP/
√

ξ. If we ignore the running effect, the pre-
diction is obtained as [4]

ns = 1 − 6ε + 2η � 0.967,

r = 16ε � 3 × 10−3,

dns
d ln k

= 16εη − 24ε2 − 2ζ2 � −5.4 × 10−4, (3.40)

where the definition of slow roll parameters are

ε = M2
P

2

(
dU/dχ

U

)2

, (3.41)

η = M2
P

d2U/dχ2

U
, (3.42)

ζ2 = M4
P

(d3U/dχ3)(dU/dχ)

U 2
. (3.43)

We note that scalar perturbation As is correctly realized in above calculation:

As = V

24π2εM4
P

� 2.2 × 10−9. (3.44)
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Now let us consider the effect of the running ofλ. From the result of previous chapter,
the Higgs self coupling has local minimum around string/Planck scale. Then, by
expand the λeff around its minimum μmin, we have

λeff(μ) = λmin +
∞∑

n=2

βn(
16π2

)n
(
ln

μ

μmin

)2

. (3.45)

In the vicinity of μmin, we can safely neglect n ≥ 3 terms.
Then, the Higgs potential is approximated as

V (ϕ) = λeff(μ)

4
ϕ4. (3.46)

The requirement that potential should be moronically increasing function, we obtain
the lower bound on λmin:

λmin ≥ λc := β2
(
64π2

)2 . (3.47)

We should note that there are two choices of way to take renormalization scale μ.
The prescription I is

μ = ϕ√
1 + ξϕ2/M2

P

, (3.48)

while the prescription II is

μ = ϕ. (3.49)

These two prescriptions correspond the effective mass in Einstein frame and Jor-
dan frame, respectively. See Sect. 3.3 for the detail. In the following sections, we
numerically calculate inflationary parameters in both prescriptions.

3.2.1 Prescription I

In our potential, Eq. (3.45), we have four parameters: λmin,μmin,β2 and ξ. β2 is
the order of one quantity, and we fix β2 = 0.5 in our analysis. In order to realize
As � 2 × 10−9, we must tune one parameter. We tune λmin to reproduce correct As .
As a result, our prediction depends on two parameters, μmin and ξ.

We show the detailed predictions of the Higgs inflation in Fig. 3.5. In the figure,
we defined
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Fig. 3.5 Left Predictions on inflationary parameters, r and ns in prescription I. Right Same as left
figure, but dns/d ln k versus ns . These figures are taken from Ref. [7]

c = μmin

MP/
√

ξ
. (3.50)

The solid line corresponds to the constant c, and dashed one corresponds to the
constant ξ. One can see that the relation between ns , r and dns/d ln k. Some of
the region is consistent with current bound, and the future detection of the tensor
perturbation might be strong hint on this inflation model. In the left panel of Fig. 3.6,
the field value corresponding to the observed cosmic microwave background, ϕ∗, is
presented. We can see that ϕ∗ is around the Planck scale.

Next, we evaluate the effect of higher dimensional operator, and see how the
higher dimensional term should be small in order not to violate successful inflation.1

As an example, we take

�V = λ6
ϕ6

M2
P

(3.51)

in Jordan frame. In Einstein frame, the potential becomes

�U = λ6
ϕ6

(
1 + ξϕ2/M2

P

)2 . (3.52)

Figure3.7 shows the predictions on ns and r in the case of c = 0.98 (left) and
c = 1 (right). Each solid line corresponds to constantλ6, and dashed one corresponds
to constant ξ. We can see that λ6 needs to be sufficiently small in order to realize

1The smallness of higher dimensional term would be related to asymptotic scale (shift) symmetry
in Jordan (Einstein) frame [11].
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Fig. 3.7 Same as the left panel of Fig. 3.5, but introducing λ6 term. We take c = 0.98 and c = 1
in the left and right panels, respectively. These figure are taken from Ref. [7]

successful inflation. In the Fig. 3.8, the predictions on dns/d ln k and ns are shown,
and ϕ∗ is plotted in the right panel of Fig. 3.6.

3.2.2 Prescription II

In this section, we present the numerical estimation of the prescription II. In this case,
we can show that the potential becomes almost quadratic one. FromEqs. (3.39), (3.45)
and (3.49), the potential is
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Fig. 3.8 Same as the right panel of Fig. 3.5, but introducing λ6 term. We take c = 0.98 and c = 1
in the left and right panels, respectively. These figure are taken from Ref. [7]

U = 1

4
ϕ4

(
λmin + β2

(16π)2

(
ln

ϕ

μmin

)2
)

1
(
1 + ξϕ2/M2

P

)2

= 1

4

ϕ4

(
1 + ξϕ2/M2

P

)2

(
λmin + β2

(16π)2

(
χ√
6MP

− ln c

)2
)

� 1

4

M4
P

ξ2

(
λmin + β2

(16π)2

(
χ√
6MP

− ln c

)2
)

. (3.53)

In the last line, we have taken ϕ 	 MP/
√

ξ.
In the Fig. 3.9, the slow roll parameters are plotted as functions of X = ϕ/

(MP/
√

ξ) in the prescription II. Here we take c = 1. In the Fig. 3.10, the predic-
tions on ns and r are shown. The small and large dots represent N∗ = 50 and 65. We

Fig. 3.9 ε and η as functions
of X = ϕ/(MP/

√
ξ). This

figure is taken from Ref. [7]

0.5 1.0 1.5 2.0 2.5 3.0
4

2

0

2

4

6

8

X



3.2 Higgs Inflation from Standard Model Criticality 39

Fig. 3.10 The predictions of
ns versus r in prescription II.
The small and large dots are
N∗ = 50 and 65,
respectively. This figure is
taken from Ref. [7]
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note that this prediction is almost same as that of quadratic chaotic inflation, which
is marginal under the recent Planck 2015 result.

3.3 The Difference Between Prescription I and II

What is the physical meaning of the prescription I and II? In this section, we try to
answer this question.

For simplicity, we consider the massless φ4 theory.

L = 1

2
∂μφ ∂μφ − 1

4!λφ4. (3.54)

with non-minimal coupling ξRφ2. Let us consider the Coleman-Weinberg potential
of this model. The effective mass is given by

m2
eff =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m2
J = 1

2
λϕ2, Jordan frame,

m2
E = 1

2
λϕ2 1

(1 + ξ2/M2
P)2

, Einstein frame,

(3.55)

Therefore, by utilizing the momentum cutoff scheme, the effective potential in the
Jordan frame becomes
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VJ,eff = 1

4!λϕ4 +
∫

|p|<�J

d4 p

(2π)4
log(p2 + m2

J )

� 1

4!λϕ4 + m4
J

32π2
λ2ϕ4 log

(
�2

J

m2
J

)

= 1

4!ϕ
4

(
λ + 3

16π2
λ2 log

(
�2

J

μ2

))
+ 1

128π2
λ2ϕ4 log

(
μ2

m2
J

)

=: 1

4!λ(μ)ϕ4 + 1

128π2
λ2ϕ2 log

(
μ2

m2
J

)
. (3.56)

In the second line, we have omitted the quartic divergent and quadratic divergent
terms, which should be removed by the bare cosmological constant and bare mass
term. In the last line, we have defined renormalized coupling λ(μ). If the �J is
constant respect for ϕ, μ = mJ gives good approximation.

On the other hand, in the Einstein frame, we obtain

VE,eff = 1

(1 + ξϕ2/M2
P )2

{
1

4!ϕ
4

(
λ + 3

16π2 λ2 log

(
�2

E

μ2

))
+ 1

128π2 λ2ϕ4 log

(
μ2

m2
E

)}
. (3.57)

The relation between the cutoff in the Jordan frame and Einstein frame is given by

�J = �2�E . (3.58)

We can see this by following expression:

∫

gμν pμ pν<�J

d4 p

(2π)4
log(gμν pμ pν + m2

J ) =
∫

�2 ĝμν pμ pν<�J

d4 p

(2π)4
log(�2ĝμν pμ pν + m2

J )

=
∫

�2 ĝμν pμ pν<�J

d4 p

(2π)4
log(ĝμν pμ pν + m2

E ) + const.

=
∫

ĝμν pμ pν<�−2�J

d4 p

(2π)4
log(ĝμν pμ pν + m2

E ) + const.

(3.59)

Hence, if we take the constant cutoff in the Jordan frame, the cutoff in the Einstein
frame depends on ϕ, and vice versa. The problem is that which frame we have to
take the constant cutoff �.

Whenwe take the constant cutoff in the Jordan frame,we can improve the effective
potential by puttingμ = mJ , which is nothing but the prescription II. The prescription
I corresponds to the constant cutoff in theEinstein frame. This is the physicalmeaning
of two prescriptions.
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Chapter 4
Naturalness Problem and Quantum Gravity

Abstract In this chapter, we try to solve the naturalness problem based on the
principle beyond ordinary field theory, maximum entropy principle and saddle/non
analytical point of vacuum energy. In Sect. 4.1, we briefly review the naturalness
problem of Higgs boson. In Sect. 4.2, we explain the original idea given by Coleman.
In Sect. 4.3, we present a solution to the cosmological constant problem and Higgs
mass usingmaximum entropy principle. In Sect. 4.4, we show a solution to the strong
CPproblemand cosmological constant problembased on the argument about vacuum
energy.

4.1 Naturalness Problem

It is well known that the mass of the SMHiggs boson has a serious problem. The one-
loop correction to the Higgs mass contains the quadratic divergence, and therefore
the natural scale of the Higgs mass is around the cutoff scale. Because the natural
cutoff scale of the theory is the string scale, the observed value of the Higgs mass,
125GeV, is unnaturally small. This is so-called gauge hierarchy problem.

One of the most natural solutions to this problem is introducing the supersym-
metry, which is the symmetry between bosons and fermions. By introducing this
symmetry, the quadratic divergence to the Higgs mass is canceled. For example, the
top quark contributions are canceled by stop contribution. Supersymmetry should be
spontaneously broken because we do not know the scalar partner of the electron at
the same mass. Then, the Higgs mass receives the radiative correction which is pro-
portional to the mass of supersymmetry particle, which should be around TeV scale
in order to solve the fine-tuning problem. However, no significant deviations from
the SM is found in the LHC results, which means that it becomes difficult to solve
the fine-tuning problem by considering the supersymmetry. Although there are other
solutions to fine-tuning problem within field theory such as gauge Higgs unification,
Randall-Sundrum model and composite Higgs, all of these kind scenarios require
new physics around TeV scale.

Taking into account above situation, it is good time to seek for solution beyond the
ordinary local field theory. Probably, the most popular one is the anthropic principle,

© Springer Nature Singapore Pte Ltd. 2017
Y. Hamada, Higgs Potential and Naturalness After the Higgs Discovery,
Springer Theses, DOI 10.1007/978-981-10-3418-3_4
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which is based on the landscape and multiverse in string theory. A problem of the
anthropic principle is that how to define the probability measure in the multiverse is
unclear. In this thesis, we focus on another possibility, the baby universe mechanism
which is originally proposed by Coleman many years ago [1], see also Refs. [2, 3].
The original idea is given by Euclidean gravity, and hence has the problem of the
conformal mode. Let us see this problem concretely. For the homogenous, isotropic
and closed universe is described by

ds2 = dt2 − a2

(
dr2

1 − r2
+ r2d�2

)
. (4.1)

Then the action of gravity with a scalar field system becomes

S =
∫

d4x

{
1

2
M2

P (R − 2�) + 1

2
∂μφ∂μφ

}

�
∫

dt

(
−1

2
aȧ2

)
+

∫
d4x

(
1

2
∂μφ∂μφ

)
. (4.2)

We can see that the coefficient of the kinetic term of a is negative. On the other hand,
the kinetic term of a scalar field has positive coefficient, which leads to the fact that
we can not take bounded Hamiltonian by rotating the time coordinate.

Recently, Kawai and Okada revisited the baby universe mechanism and formu-
lated it in the Lorentzian universe [4], and proposed the maximum entropy prin-
ciple(MEP). Succeeding Kawai and Okada’s work, we find that the Fermi con-
stant(Higgs vacuum expectation value) is indeed fixed by the MEP [5, 6]. Further-
more, we find another mechanism to fix the parameters in the SM, and present how
to fix the θ parameter in SU (3)C , Higgs quartic coupling in the string/Planck scale
and cosmological constant [7].

4.2 Coleman’s Argument

We first review the original argument given by Coleman.

∑

topology

∫
Dg exp(−SE ), SE = M2

P

2

∫
d4x

√
g (R + 2� + matter) (4.3)

As we have mentioned in the beginning of this chapter, the Euclidean gravity has
the problem of wrong sign kinetic term. Let us remember why we cannot justify
Wick rotation by using the one dimensional system of the two free particles, one of
which has wrong sign kinetic term [8]. That is,
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H = 1

2m2
1

p2
1 − 1

2m2
2

p2
2, (4.4)

i∂tψ = (−∂2
x1 + ∂2

x2

)
ψ. (4.5)

Performing Fourier transformation, we have

i∂t ψ̃ + (−k2
1 + k2

2)ψ̃ = 0, Lorentzian (4.6)

−∂tE ψ̃E + (−k2
1 + k2

2)ψ̃E = 0. Euclidean (4.7)

We can easily solve above equations:

ψ̃ = exp
[−i(k2

1 − k2
2)t

]
, Lorentzian (4.8)

ψ̃E = exp
[−(k2

1 − k2
2)tE

]
. Euclidean (4.9)

In the coordinate space, the wavefunctions are written by

ψ =
∫

dk1dk2 exp
[−i(k2

1 − k2
2)t

]
e−i(k1+k2)(x1+x2) Lorentzian (4.10)

ψE =
∫

dk1dk2 exp
[−(k2

1 − k2
2)tE

]
e−i(k1+k2)(x1+x2) Euclidean. (4.11)

The integral is divergent in Euclidean with both tE < 0 and tE > 0.
On the other hand, in the Lorentzian universe, there are no problems. In fact, this

is why the universe expands. If this is not the case, the universe does not continue
expanding but stabilizes at some point.

In the following in this section, we consider in the Euclidean gravity based on
Coleman’s work although above problem exists, because it is instructive to move to
consideration in Lorentzian universe from the next section.

Let us consider the closed universe with Euclidianization t → i tE and cosmolog-
ical constant �. Friedmann equation becomes

−
(

da/dtE

a

)2

= �

3
− 1

a2
, (4.12)

from which we obtain

∫ a

0

da√
1 − a2�/3

=
∫ T

0
dtE . (4.13)
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Here we impose a(tE = 0) = 0 as a initial condition. We have

LHS =
√

3

�

∫ √
�/3a

0

da′
√
1 − a′2 =

√
3

�
arcsin

(√
�

3
a

)
. (4.14)

Hence, we obtain a as a function of t :

a =
√

3

�
sin

(√
�

3
tE

)
. (4.15)

The metric is

ds2 = dt2E + a2

(
dr2

1 − r2
+ r2d�2

)
. (4.16)

By putting r = sin ρ, we get

ds2 = dt2E + a2
(
dρ2 + sin2 ρd�2

)

= dt2E + a2d�3. (4.17)

By performing the transformation of variable,

t ′
E ≡

√
3

�
tE , (4.18)

the metric becomes

ds2 = �

3

(
dt ′2

E + sin2 t ′
E d�3

)

= �

3
d�4. (4.19)

In this sense, Euclidean gravity has the solution of S4 topology. Note that we can
understand the metric of Sn iteratively.

d�2 = dθ22 + sin2 θ2dφ2,

d�3 = dθ23 + sin2 θ3d�2,

... (4.20)

Let us consider the action of this solution. From Eq. (4.3), we have

Rμν − 1

2
Rgμν = �gμν →

contraction by gμν
� = −4R, (4.21)
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then the action becomes

SE = 1

2
M2

P

∫ √
gE d4x(R + 2�)

= 1

2
M2

P

8π2

3

⎛

⎝

√
3M2

P

�

⎞

⎠
4

(−2�)

= −24π2

�
M6

P . (4.22)

Next, let us consider the situation that some large S4 universes are connected by
small tube. We call such tube wormhole. The typical size of wormhole is expected
to be the Planck scale, and hence we try to sum up wormhole configuration in order
to obtain low energy effective action. If one wormhole is inserted, from the view
point of large universe, the non-local interaction is induced, so the effect on partition
function is given by

∫
Dg

⎛

⎝
∑

i j

ci j

∫
d4xd4y

√
g(x)

√
g(y)Oi (x)O j (y)

⎞

⎠ exp[−SW ] exp[−SE ].

(4.23)

Here SW is thewormhole action, ci j is numerical constant andOi is any local operator
in the theory. By considering the multiple insertion of the wormhole, we obtain

∫
Dg exp

[⎛

⎝
∑

i j

ci j

∫
d4xd4y

√
g(x)

√
g(y)Oi (x)O j (y)

⎞

⎠ exp[−SW ]
]
exp[−SE ],

(4.24)

as the partition function. This means that the action of the theory is modified to

Seff = SE + ci j Si S j + · · · , Si =
∫

d4x O(x). (4.25)

Here · · · represents the effect of the three, four, ..., legs wormholes. As we will see
in the next section, the key observation of the multi-local action is that parameter in
the theory becomes dynamical variable.

Provided that we assume the existence of the multiverse, the partition function of
the multiverse becomes
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Z =
∫

d �λ ω(�λ)

∫
DgDφ exp[−λi Si ]

=
∫

d �λ ω(�λ) exp[Z1(�λ)], (4.26)

because each universe is independent of each other after the summation of wormhole
configuration. Here Z1 is the partition function of single universe.

We use saddle point approximation to estimate Z1. Putting S4 solution into Z1,
as a single universe action, we obtain

−24π2

�
M2

P , (4.27)

from which one can see that � → 0 is exponentially dominated in the path integral.
Then, Coleman concludes that � is dynamically tunes to be zero.

In the following discussion, we utilize the Lorentzian version multi-local action,

∫
DgDφ exp[i Seff ], (4.28)

which would be justified by matrix model [9].

4.3 Maximum Entropy Principle

The starting point is the path integral of the multiverse:

Z =
∫

d �λ ω(�λ)

∫
DgDφ exp

(
i
∑

i

λi Si

)
=

∫
d �λ ω(�λ) exp[Z1(�λ)], (4.29)

where Z1 is

Z1 =
∫

DgDφsingleuniverse exp
[
i
∑

i

λi Si
]
. (4.30)

Therefore, what we should do is to calculate the partition function of single uni-
verse. If some value of λ dominates in the integral, the parameter of theory is dynam-
ically fixed at that point. Z1 is calculated as

Z1(λ) =
∫

DpzDzDN exp[i S]

=
∫ ∞

−∞
dT

∫
DpzDz exp

[
i
∫

dt (pz ż − T H)

]
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= 〈 f |
∫ ∞

−∞
dT exp

[
−iT Ĥ

]
|i〉

= 〈 f |δ(Ĥ)|i〉
= 〈 f |φE=0〉〈φE=0|i〉, (4.31)

where we introduce variable z = a3. In the second line, we take the gauge

N (t) = T, (4.32)

and N integral becomes T integral. The normalization of the wavefunction is

〈φE ′ |φE 〉 = δ(E − E ′), (4.33)

and Hamiltonian is given by

Ĥ = z

(
−1

2
p2

z − U (z)

)
, (4.34)

with

U (z) = M4
P

z2/3
− M4

P� − Crad

z4/3
M2

P , (4.35)

where we assume matter term has only radiation component. Note that we have
treated matter fields classically. The wavefunction is the solution of one dimensional
Schrodinger equation:

Ĥ |φE=0〉 = 0. (4.36)

The WKB solution is

φE=0(z) � 1√
zkE=0(z)

sin

(∫ z

0
dz′kE=0(z

′)
)

,

k2
E=0(z) = −2U (z) = −2

(
M4

P

z2/3
− M4

P� − Crad

z4/3
M2

P

)
(4.37)

Therefore, we can calculate Eq. (4.31) provided that initial and final scale factor
are specified. As for initial condition, we take aini = ε, where ε is very small value.
afinial depends on the cosmological history. If � is smaller than �cri = M2

P/(4Crad),
then the universe shrinks back and we take afinial = ε. On the contrary, if � > �cri,
the universe eternally expands. In this case, as an ad hoc assumption, we use IR
cutoff aIR as a value of afinial.
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As a result, we obtain

Z1 � φ(zfinal)φ
∗(zini)

�

⎧
⎪⎪⎨

⎪⎪⎩

const|φε=0(ε)|2, for � < �cr

1√
�1/4

sin(a3
IR�1/2 + α′)φ∗

E=0(ε), for � > �cr

. (4.38)

One can see that � becomes maximum at � = �cri. As a result, we obtain the
multiverse partition function as

Z =
∫

d �λ ω(�λ) exp[Z1(�λ)] (4.39)

∼ exp

(
const

1

�
1/4
cri

)
∼ exp

(
const C1/4

rad

)
. (4.40)

The energy density of the radiation appears in the exponent, which means that the
parameter of the SM is fixed in such a way that the radiation energy of late stage of
the universe is maximized, which we call MEP.

4.3.1 Big Fix of the Fermi Constant

In this subsection, we show how to fix the Fermi constant starting from the MEP. We
denote Higgs vacuum expectation value by v. We fix the other parameters in the SM,
gauge couplings, Yukawa couplings and Higgs quartic coupling and only vary v.1

In the following argument, we assume that the v dependence of dark energy and
dark matter is smaller than that of baryon. This assumption would be reasonable if
dark sector is irreverent of electroweak physics.

First, to illustrate our procedure, we consider the case that all baryons are proton.
After that, we add the effect of helium. If all baryons are proton, the produced entropy
by baryon decay is

NBm p

a3(τp)
= Crad

a3(τp)
, (4.41)

then we have

Crad = NBm pa(τp). (4.42)

1Similar argument can be done if we fix gauge couplings, quark mass and Higgs quartic coupling
[5].
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Here m p is the proton mass, NB is the baryon number of the universe. Friedmann
equation tells us

1

τ 2
p

= 1

M2
P

NBm p

a3
, (4.43)

from which we have

Crad ∝ N 4/3
B τ 2/3

p m4/3
p . (4.44)

Here τp is the lifetime of proton.
When we take into account the existence of helium nuclei, Boltzmann equations

are given as follows. By solving the following Boltzmann equations, we obtain the
entropy at the late stage of the universe,

d Np

dt
= −τ−1

p Np + 3τ−1
He NHe,

d NHe

dt
= −τ−1

He NHe,

da/dt

a
=

√
1

3M2
P

(
M

a3
+ Crad

a4
− M2

P

a2

)
,

M = m p Np + m He NHe,

dCrad

dt
= a m p

(
τ−1

p Np + (1 − 2ε)τ−1
He NHe

)
, (4.45)

with initial conditions

Np(0) = NB(1 − 2Xn), NHe(0) = NB
Xn

2
, (4.46)

where Np and NHe are the number of the proton and helium, m He and τHe are the
mass and lifetime of helium, respectively. When the helium decays into the pion,
pion loses its energy by the collision with other nucleon. This effect is represented
by ε.

What we want to know is the v dependence of Crad. Numerically, Crad is written
as

Crad ∝ (
NBm p

)4/3
τ 2/3

p

{
1 − c

(
ε, τHe/τp, m He/m p

)
Xn

}
, (4.47)

where c is the numerical constant which is around 0.01 [6]. The first factor is the
same as Eq. (4.44). The second factor represents the effect of helium nuclei. If baryon
number is created at the scalemuch higher than the electroweak scale, see for example
Refs. [10–13], the resultant baryon number is independent of v, which we assume in
the following. Moreover, we can check numerically that the v dependence of c is so
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small that we can treat c as a constant. After all, we only take care of v dependence
of m p, τp and Xn .

First, let us considerm4/3
p τ

2/3
p part. In order to estimate τp, we consider the process

p → e+ + π0. Then, we get

τ−1
p ∝ m5

p

M4
P

(
1 − m2

π

m2
p

)2

. (4.48)

As a phenomenological expression, we use

m p = α�QCD + β(2mu + md), mn = α�QCD + β(mu + 2md) + mem,

Q = β(md − mu) − mem, m2
π = γ�QCD(mu + md). (4.49)

In the thesis, we use the following typical values reproducing observed up and down
quark masses:

α = 3.1, β = 1.4, γ = 16, mem = 2.2MeV, �QCD = 300MeV. (4.50)

The choice of �QCD is just the convention. We have to comment on why we choose
mem = 2.2MeV. We assume the model of nucleon as follows: three quarks exists,
and the distances between two quarks are about proton charge radius, rN = 0.86fm.
Then we can roughly estimate the electromagnetic energy of the neutron and proton
as

−m(n)
em/αem ∼ −1

3
× 2

3
− 1

3
× 2

3
+ 1

3
× 1

3
= −1

3
,

−m(p)
em /αem ∼ 2

3
× 2

3
− 1

3
× 2

3
− 1

3
× 2

3
= 0. (4.51)

In the region where mu,d � �QCD, we have

m4/3
p τ 2/3

p ∝
(
1 −

(
4β

α
− 2γ

3α2

)
mu

�QCD
−

(
2β − 2γ

3α2

)
md

�QCD

)
. (4.52)

ByputtingEq. (4.50) and (mu, md) = (2.3MeV, 4.8MeV), one can see thatm4/3
p τ

2/3
p

is decreasing function of v. We plot m4/3
p τ

2/3
p in the Fig. 4.1.

Next, let us move on the evaluation of v dependence of Xn . When the interaction
rate of the weak interaction becomes smaller than the Hubble parameter, proton-
neutron conversion process is not effective, and Xn is almost fixed. Succeedingly,
until the time of big bang nucleosynthesis(BBN), some neutrons decay via n →
p e+ νe. Finally, the Xn is fixed at the time when the BBN starts, t = tBBN. Hence,
Xn is given by
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Fig. 4.1 m4/3
p τ

2/3
p as a

function of the Higgs VEV
v. Here we ignore the overall
constant, and only plot v
dependent factor, see
Eq. (4.52)
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Xn(t → ∞) = e−(tBBN−tdec)/τn
1

1 + eQ/Tdec
. (4.53)

Here Q = mn − m p, τn is the lifetime of the neutron, tdec is the freeze out time of
the weak interaction.

tdec is determined by equating the interaction rate and Hubble parameter. The
interaction rate of the proton-neutron conversion process,

n + ν ↔ p + e−, n + e+ ↔ p + ν̄, n ↔ p + e− + ν̄, (4.54)

is

�(p → n) = (2.5sec)−1

(
T

1MeV

)5 (246GeV

v

)4 P(me/T, Q/T )

P(0, 0)
, (4.55)

with

P(x, y) =
∫ ∞

0
dz

√

1 −
(

x2

y + z

)2
(y + z)2z2

(1 + e−zT/Tν )(1 + ey+z)
, (4.56)

where me is the electron mass and Tν is the temperature of the neutrino

Tν = T × S(me/T )

S(0)
, S(x) = 1 + 45

2π4

∫ ∞
0

dy y2
(√

x2 + y2 + y2

3
√

x2 + y2
1

1 + e
√

x2+y2

)
.

(4.57)

On the other hand, Hubble parameter is

H � 1

2

√
43π2

90

T 2

MP
� 1

2

1

t
(4.58)

From Eqs. (4.55) and (4.58), we can calculate tdec numerically. We plot tdec as a
function of v in the Fig. 4.2.
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Fig. 4.2 Tdec as a function
of the Higgs VEV v. We can
see that the decoupling
temperature is around MeV
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The lifetime of the neutron is calculated as

τ−1
n = (885sec)−1

( me

0.51MeV

)5 (246GeV

v

)4 F(Q/me)

F(1.29MeV/0.51MeV)
, (4.59)

with

F(x) =
∫ x

1
dy y(y2 − 1)1/2(x − y)2. (4.60)

Since BBN time rarely depends on v, we fix

TBBN = 0.1MeV. (4.61)

The relation between TBBN and tBBN is given by Eq. (4.58). Now Eq. (4.53) can be
estimated as a function of v and we plot it in Fig. 4.3. We note that, if v is too small,
the neutron becomes heavier than the proton, and therefore we only plot the range
v � 200GeV.

Combining all the ingredients, we can evaluate Crad as a function of v. Figure4.4
shows v dependence of Crad. We can see that v is fixed around the electroweak
scale, v = O(100)GeV. The hierarchy problem of the Higgs mass is solved. The
electroweak scale comes from τn ∼ tBBN, which is rewritten as

vh ∼ T 2
BBN

MP y5e
. (4.62)
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Fig. 4.3 Xn as a function of
the Higgs VEV vh
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Fig. 4.4 Crad as a function
of the Higgs VEV vh . We
can see that vh is fixed to be
the order of 100GeV. Here
we take c = 1/100
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4.4 Fixing Parameters from Vacuum Energy

4.4.1 Formulation

In this section, we present another point of view of the fixing of the parameters of
theory. We note that the argument in this section does not assume the existence of
the multiverse. Our starting point is the multi-local action which may appears after
the integration of various wormhole configurations,

SM =
∑

i

ci Si +
∑

i, j

ci, j Si S j +
∑

i, j,k

ci, j,k Si S j Sk + · · · . (4.63)

Here Si is a usual local action,

Si =
∫ ∞

0
dt

∫
d3x Oi (t, x), (4.64)

and ci is a constant.
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In general, it is very difficult to treat theory without locality. However, fortunately,
multi-local action can be interpreted as a superposition of various values of coupling
constants,

ei SM =
∫

d �λ f (�λ) ei
∑

λi Si , (4.65)

by performing the Fourier transformation. In fact, the variable λi corresponds to
coupling constant of Si . Here we treat coupling constants collectively, and denote
by �λ. By using the Eq. (4.65), the partition function of multi-local action can be
expressed as

Z =
∫ t=∞

t=0
Dφ ei SM ψ∗

f ψi

=
∫

d �λ f (�λ)

∫ t=∞

t=0
Dφ ei

∑
λi Si ψ∗

f ψi

=
∫

d �λ f (�λ) 〈 f |T e−i
∫ +∞
0 dt Ĥ(�λ;acl (t))|i〉, (4.66)

where H is the Hamiltonian, acl is the classical solution of the scale factor, andψi and
ψ f represent the initial and final wavefunctions, |i〉 and | j〉 are the initial and final
state, respectively. The point is that now coupling constants �λ are not the constants
but the variables. If a some value of �λ, �λ0 dominates in the integral, we get

Z ∼ f (�λ0)〈 f |T e−i
∫ +∞
0 dt Ĥ( �λ0;acl (t))|i〉, (4.67)

and hence the parameters are dynamically fixed.
Assuming the spacetime background which is exponentially expanding universe,

we have

T e−i
∫ +∞
0 dt Ĥ(�λ;acl (t))|i〉 ∼ e−iε(�λ)

∫ +∞
t∗ dt V3(acl (t))|ψ(t∗; �λ)〉, (4.68)

with V3 being the space volume of the universe, ε being vacuum energy of the
universe. |ψ(t∗; �λ)〉 is

|ψ(t∗; �λ)〉 = T e−i
∫ t∗
0 dt Ĥ(�λ;acl (t))|i〉, (4.69)

and t∗ is time when the vacuum energy dominated era starts. Substituting Eqs. (4.68)
and (4.69) into Eq. (4.66), we get

Z ∼
∫

d �λ f (�λ) e−iε(�λ)
∫+∞

t∗ dt V3(acl (t))〈 f |ψ(t∗; �λ)〉 ∼
∫

d �λ f (�λ) e−iε(�λ)V4 〈 f |ψ(t∗; �λ)〉. (4.70)

Consequently, we should evaluate the integration in this expression to check the
fixing of parameters. For this purpose, the following formulas are useful thanks to
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the largeness of spacetime volume V4. If the vacuum energy ε(λ) has a saddle point,
λ0,

eiε(λ)V4 ∼
V4→∞

√
2π

iε′′(λ)V4
eikε(λ)δ(λ − λ0), (4.71)

by using the saddle point approximation. On the other hand, if ε(λ) is continuous but
ε′(λ) is not continuous at some point, λ0, then

eiε(λ)V4 ∼
V4→∞

i

V4

[
eiV4ε(λ)

(
dε

dλ

)−1 ∣∣∣∣
λ0+

−eiV4ε(λ)

(
dε

dλ

)−1 ∣∣∣∣
λ0−

]
δ(λ − λ0).

(4.72)

4.4.2 Strong CP Problem

It is natural that the dimensionless parameters in Lagrangian takes O(1). However,
the SU (3)C θ term,

Sθ := θ

32π2

∫
d4x Fa

μν F̃aμν, (4.73)

should take θ < 10−10 by the measurement of the neutron electric dipole moment
[14]. This is strong CP problem, see App.10 for the detailed review of this subject.
This problem can be solved starting from the Eq. (4.70),

Z ∼
∫ 2π

0
dθ f (θ)e−iε(θ)V4〈 f |ψ(t∗; θ)〉, (4.74)

where the energy density ε is

ε ∼ m2
π�

2
QCD cos θ. (4.75)

ε(θ) has saddle points at θ = 0 and θ = π, and hence by using Eq. (4.71), the partition
function is dominated by saddle points,

Z ∼
√

2π

iV4�QCD

[
f (0)e−iε(0)V4〈 f |ψ(t∗; 0)〉 + f (π)e−iε(π)V4〈 f |ψ(t∗;π)〉] ,

(4.76)

which indicates that θ is fixed at 0 or π with almost same probability. Then, we can
conclude that θ = 0 is naturally realized.
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We note that θ = π is already excluded although θ = π does not induce the CP
violation. In the case of θ = π, the relation between hadron masses do not agree
with experiment, see App.10 for the detail.

4.4.3 Multiple Point Criticality Principle

In this subsection, we show that the situation of the MPP is natural in the context of
the vacuum energy argument.

We take Higgs quartic coupling λEW at the electroweak scale as a variable, and
fix the other parameters.

V = −1

2
μ2ϕ2 + 1

4
λϕ4 = 1

4
λ

(
ϕ2 − μ2

λ

)2

− μ4

4λ
. (4.77)

We denote λ∗ as the value of λEW realizing the MPP. We also write the position of
the minimum at electroweak and Planck scale as ϕEW and ϕMP , respectively.

The position of the true vacuum, 〈ϕ〉, depends λEW ,

〈ϕ〉 �
⎧
⎨

⎩

ϕEW , for λ∗ < λEW

ϕMP . for λEW < λ∗
(4.78)

The vacuum energy becomes

ε(λEW ) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− μ4

4λEW
, for λ∗ < λEW

1

4
λMP ϕ

4
MP

. for λEW < λ∗

(4.79)

up to the constant term. Therefore, the partition function becomes

Z =
∫

dλEW f (λEW )e−iεV4〈 f |ψ(t∗;λEW )〉. (4.80)

From the Eq. (4.79), ε(λEW ) is themonotonic function for λ∗ < λEW and λEW < λ∗,
respectively.

As a result, we get

Z ∼ f (0)

V4
e−iε(0)V4〈 f |ψ(t∗; 0)〉, (4.81)
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by using

e−iε(λEW )V4 ∼ ie−iε(λ∗)V4

V4

[(
dε(λEW )

dλEW

)−1 ∣∣∣∣
λ∗+

−
(

dε(λEW )

dλEW

)−1 ∣∣∣∣
λ∗−

]
δ(λEW − λ∗)

(4.82)

This is nothing but the situation of the MPP.

4.4.4 Generalization to Wheeler-DeWitt Wavefunction
and Cosmological Constant

Since we would like to treat the cosmological constant �, we generalize previous
discussion to the Wheeler-DeWitt wavefunction. Namely, by taking the gauge in
which lapse function is constant, we should integrate over the time T ,

ZW D =
∫

d�B

∫
d �λ f (�B , �λ)θ(�)

∫ ∞
0

dT 〈 fa | ⊗ 〈 fM R |e−i(ĤG (�B )+ĤM R (�λ;â))T |ε〉 ⊗ |iM R〉.
(4.83)

Here HG and HM R are the Hamiltonian of gravity and matter/radiation, and we insert
step function θ(�) and only consider the region� ≥ 0 because we can not deal with
the big crunch, unfortunately. The tensor production means product of scale factor
and matter/radiation Hilbert space. Let us assume that the parameters of matter and
radiation sector is fixed, and focus on the integration over �,

Z =
∫ ∞

0
dT

∫ ∞

0
d� f (�)〈a∞|e−i Ĥ(�)T |ε〉. (4.84)

Here the Hamiltonian for the scale factor is

Ĥ(�) = − p̂2
a

2âM2
P

+ â3ρ(â)

6
, ρ(â) = � + ρM R(â), (4.85)

where p̂a is the momentum of â and ρM R is the energy density coming from matter
and radiation.

Inserting the complete set into Eq. (4.84),

1 =
∫ +∞

−∞
d E |E;�〉〈E;�|, Ĥ(�)|E;�〉 = E |E;�〉, (4.86)

and remembering the standard formula,

lim
t→+∞

e−i Et − 1

−i E
= πδ(E) + PV

1

E
, (4.87)
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we obtain

Z =
∫ ∞

0
d� f (�)

∫ ∞

0
dt

∫ ∞

−∞
d E e−i Et 〈a∞|E;�〉〈E;�|ε〉

=
∫ ∞

0
d� f (�)

(
π〈a∞|0;�〉〈0;�|ε〉 + PV

∫ ∞

−∞
d E

E
〈a∞|E;�〉〈E;�|ε〉

)
.

(4.88)

Here PV represents the principle value integral. In the App.12, we show that
the second term in Eq. (4.88) can be ignored, and therefore we only take the first
term hereafter. Intuitively, this is understood that the classical Friedmann equation
(Hamiltonian constraint) describes our universe very well.

As a result, path integral becomes

Z =
∫ ∞

0
d� f (�)π〈a∞|0;�〉〈0;�|ε〉. (4.89)

In the WKB approximation, the wavefunction becomes

〈a|0;�〉 = MP

√
a

pcl
exp

(
i
∫ a

da′ pcl(a
′)
)

, pcl(a) := MPa2

√
ρ(a)

3
. (4.90)

If the energy density consists of the cosmological constant and matter,

ρ(a) = � + M

a3
:= � + ρM(a), (4.91)

the integral can be performed:

∫ a

aM

da′ pcl (a
′) = MP

3
3
2

⎛

⎝a3
√

ρ(a) − a3M
√

ρ(aM ) + M√
�

log

⎡

⎣ a
3
2 (� + √

�ρ(a))

a
3
2
M (� + √

�ρ(aM ))

⎤

⎦

⎞

⎠

:= MP a3

3
3
2

g(�, a), (4.92)

The property of g is as follows.

g(0, a) =2

(√
ρM(a) −

(aM

a

)3 √
ρM(aM)

)
, lim

a→∞ g(�, a) = √
�,

dg(�, a)

d�

∣∣∣∣
�=0

= 1

3

(
1√

ρM(a)
−

(aM

a

)3 1√
ρM(aM)

)
. (4.93)
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So we can use the approximation Eq. (4.72):

〈a|0;�〉 ∼
a→∞

3
3
2 i

MPa3

(
dg(�, a)

d�

)−1 ∣∣∣∣
�=0

MP

√
a

pcl(a)
exp

(
i

MPa3

3
3
2

g(0, a)

)
δ(�)

= 3
3
2 i

MPa3

(
dg(�, a)

d�

)−1 ∣∣∣∣
�=0

δ(�)〈a|0; 0〉. (4.94)

Finally,weobtain the following expression of the partition function by substituting
Eq. (4.94) into Eq (4.89):

Z ∼ 1

a3∞

(
dg(�, a∞)

d�

∣∣∣∣
�=0

)−1

〈a∞|0; 0〉〈0; 0|ε〉

∼ 1

a3∞

(
dg(�, a∞)

d�

∣∣∣∣
�=0

)−1 ∫ ∞

0
dt 〈a∞|e−i Ĥ(0)t |ε〉. (4.95)

Therefore, the cosmological constant is fixed to be zero.

4.4.5 A Possible Way to Obtain Nonzero Cosmological
Constant

In the previous subsection, we conclude that the cosmological constant is peaked at
zero. However the observation indicates the small but nonzero value of the cosmo-
logical constant [15]. Here we discuss a possible way to obtain nonzero cosmological
constant.

In the following, we assume the existence of the multiverse. In this case, the
partition function after integrating out the wormhole configuration becomes

Z M : =
∞∑

N=0

∫
dg

f (g)

N ! ZU (g)N =
∫

dg f (g) exp (ZU (g)) , (4.96)

because universes are independent of each other without wormhole effect. Let us
expand ZU (g) around the saddle point g = g∗. Then, we obtain

ZU (g) = ZU (g∗) + 1

2

d2ZU

dg2

∣∣∣∣
g=g∗

(g − g∗)2 + O (
(g − g∗)3

)
. (4.97)

Here, the single universe partition function ZU (g) can be written as

ZU (g) =
∫

DφeigSg+··· × ψ∗
f ψi , (4.98)
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where Sg is the interaction term corresponding to the coupling g. Therefore, the
second derivative of the partition function is given by the correlation function of Sg:

d2ZU

dg2

∣∣∣∣
g=g∗

= −
∫

Dφeig∗ Sg∗ +···S2
g∗ × ψ∗

f ψi

:= −〈Ŝ2
g∗ 〉ZU (g∗). (4.99)

This is nothing but fluctuation of the coupling g,

�g ∼
(

d2ZU

dg2

)− 1
2
∣∣∣∣
g=g∗

= 1√
〈Ŝ2

g∗ 〉ZU (g∗)
. (4.100)

The order of 〈Ŝ2
g∗ 〉 is estimated as

〈Ŝ2
g∗ 〉 =

∫
d4x

∫
d4y〈Ôg∗(x)Ôg∗(y)︸ ︷︷ ︸

contract

〉

=
∫

d4x
∫

d4yW (x − y)

= V4

∫
d4X W (X) ∼ V4M4

P . (4.101)

In the second line, we use the translation invariance of the vacuum. In the last line,
we change the variables x , y into X = x − y and Y = x + y.

We can confirm this relation by considering the concrete model. For example, if
we think the free scalar theory,

∫
dd xdd y〈(∂μφ(x)

)2
(∂νφ(y))2〉 = 2

(
∂xμ

)2 (
∂yμ

)2
(

�(d/2)

2πd/2

1

|x − y|d−2

)2

=
∫

dd xdd y 8

(
�(d/2)

2πd/2

)2

(2d2 − 11d + 14)(2d2 − 2d + 5)
1

|x − y|2d

=
∫

d |x − y| �(d/2)

2πd/2 (2d2 − 11d + 14)(2d2 − 2d + 5)

× Vd
1

|x − y|d+1

= �(d/2)

2d πd/2 (2d2 − 11d + 14)(2d2 − 2d + 5)Vd�d

= 29

4π2 V4�
4. (4.102)

In the last line, we have put d = 4. We note that the two point function of the
d-dimensional free scalar theory is
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G(x − y) := 〈φ(x)φ(y)〉 = �(d/2)

2πd/2

1

|x − y|d−2 . (4.103)

The derivation of this expression is the following. The Green function satisfies the
equation of motion with delta functional source term:

∂μ∂
μG(x) = −δ(d)(x). (4.104)

Then, in the momentum, G(x) is expressed as

G(x) =
∫

ddk

(2π)d

1

k2
e−ik·x , (4.105)

which implies that G(x) only depends on the radial component of x , i.e., |x |. The
integration of Eq. (4.104) becomes

∫
dd x∂μ∂

μG(x) = −1. (4.106)

By using

∫
dd x∂μ∂

μG(x) =
∫

dd−1Sx̂μ∂
μG(x), (4.107)

we obtain
∫

dd−1S∂r G(x) = −1. (4.108)

After all, we reach the

∂r G(x) = − 1∫
dd−1S

= − �(d/2)

rd−12πd/2
, (4.109)

from which we get Eq. (4.103).
Let us return to the argument of meaning of fluctuation. Now we have seen that

the fluctuation of the dimensionless coupling g is the order of 1/
√

V4. Then, the
fluctuation of the cosmological constant may be given by

�ρ0 ∼ M4
P�g ∼ M4

P√
V4M4

P ZU (g∗)
∼ M2

P H 2
0√

ZU (g∗)
. (4.110)

The current cosmological constant is given by∼ M2
P H 2

0 because the current universe
is dominated by the vacuum energy. Therefore, if ZU (g∗) is the order of one, we can
understand the nonzero cosmological constant as a quantum fluctuation from zero.
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Chapter 5
Dark Matter and Higgs Potential

Abstract Although the SM can describe the almost all experiments, there remain
phenomena that can not be explained within the SM. That is, dark matter of the
universe, baryon asymmetry and mass of the neutrino. Among them, in this chapter,
we focus on the dark matter. we investigate the scenario to include the dark matter
by extending the SM minimally, and discuss the implications on the SM criticality.
In Sects. 5.1 and 5.2, we consider the impact on the Higgs potential by singlet and
weakly interacting dark matters, respectively.

5.1 Singlet Dark Matter

Theminimal extension of the SM to include the darkmatter is to add a stable particle,
S, to the SM. Namely, the Lagrangian becomes [1–9]

L = LSM + 1

2
(∂μS)2 − 1

2
m2

S S
2 − ρ

4! S
4 − κ

2
S2H †H. (5.1)

Here S is the real singlet scalar. S is stable thanks to Z2 symmetry, S → −S. After
the electroweak symmetry breaking, the mass of the dark matter is

M2
DM = m2

S + κv2

2
. (5.2)

Because S has the interaction term, κS2H †H , with the Higgs field, it is thermally
produced in the early universe. Assuming that the thermal production explains the
current abundance of the dark matter, we get the relation between κ and MDM [10],

log10 κ � −3.63 + 1.04 log10
MDM

GeV
, (5.3)

for MDM � 100GeV, from which we obtain MDM ∼ 330GeV × (κ/0.1).

© Springer Nature Singapore Pte Ltd. 2017
Y. Hamada, Higgs Potential and Naturalness After the Higgs Discovery,
Springer Theses, DOI 10.1007/978-981-10-3418-3_5
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Fig. 5.1 The contour plot of
κ(μ = 1017 GeV) and
ρ(μ = 1017 GeV). The red
region corresponds to the
strong coupling. In the
following, we only consider
the white region
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Wehave two new parameter, κ and ρ. In order to avoid the strong coupling regime,
we consider the region where κ, ρ ≤ 1 for μ ≤ 1017 GeV. In Fig. 5.1, we show the
region realizing κ(μ = 1017 GeV), ρ(μ = 1017 GeV) ≤ 1. In the red region κ(μ =
1017 GeV) ≥ 1 or ρ(μ = 1017 GeV) ≥ 1. Therefore, we take κ(μ = MDM) ≤ 0.4
and ρ(μ = MDM) ≤ 0.6.

Let us consider the Higgs potential of this model. The one-loop effective potential
is given by

V = Vtree + �V1−loop,DM, (5.4)

where Vtree and �V1−loop,DM are

Vtree = e4�(ϕ) λ(μ)

4
ϕ4,

�V1−loop,DM = �V1−loop + M4
DM

64π2

(
ln

MDM(ϕ)2

μ2
− 3

2

)
. (5.5)

Here MDM(ϕ) =
√

κϕ2

2 e2�(ϕ) + m2
S . The wavefunction renormalization �(ϕ) of this

model is same as that of the SM at one loop level.
The introduction of S changes the running of the Higgs self coupling as follows:

βλ = βλ,SM + 1

16π2

1

2
κ2, (5.6)
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Fig. 5.2 Left The contour plot of λmin and μmin in Mt -κ(MDM) plane. Right Running of λeff (μ)

for Mt = 172GeV, κ(MDM) = 0.17 and ρ(MDM) = 0.1. λ takes the minimum value 0 at around
1017 GeV

see Appendix B for runnings of the other coupling constants. We can see that the
dark matter helps the stability of the electroweak vacuum.

We define λeff,DM as

λeff,DM = Vtree + �V1−loop

ϕ4
, (5.7)

and examine its running. Figure5.2 shows the contour of the running of λeff,DM.
The red band corresponds to the constant μmin = 1016, 1017 and 1017.5 GeV. The
green band represents the contour which satisfies λmin = 0. The right hand side of
the green line corresponds the unstable electroweak vacuum. The width of band is
the uncertainty of ρ(MDM). The formula of the bare Higgs mass is also modified.

m2
B = −

(
6λ + 3

4
g2Y + 9

4
g22 − 6y2t + 1

2
κ

)
I1, (5.8)

Figure5.3 indicates the scale where the bare Higgs mass becomes zero. The width
of the red band corresponds to the uncertainty of ρ(MDM) =0–0.6.

Away to detect thismodel is the direct detection experiment. The spin independent
cross section of the model is given by [10]

σSI = 9.5 × 10−46 cm2
[ κ

0.05

]2 [
200GeV

mDM

]2

= 8.4 × 10−46 cm2. (5.9)

This value can be detected by the LUX [11, 12] or XENON1T [13] experiment. The
current bound from LUX [12] gives MDM � 100GeV. XENON1T can detect the
dark matter whose mass is around 1TeV.
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Fig. 5.3 The plot of the scale where m2
B = 0 in Mt -κ(MDM) plane. The width of the blue band

corresponds to the uncertainty of ρ(MDM) =0–0.6
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Fig. 5.4 The constraints from Higgs inflation in the SMwith Higgs portal singlet scalar. The green
and magenta regions are prohibited by the monotonicity and value of potential, respectively

We can also put the Higgs inflation constraint on this SM with singlet dark matter
model. We show the constraints from monotonicity and the value of the potential in
Figs. 5.4 and 5.5. We take ρ(MDM) = 0 and 0.6 in left and right panels, respectively.
The colored region is excluded, and one can see that the top mass and κ(MDM) are
corelated in the allowed region, which is our prediction.
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Fig. 5.5 Same as Fig. 5.4, except for replacing κ(MDM) by MDM

If we introduce the right handed neutrino,

�L = ν̄Riγ
μ∂μνR − MR ν̄c

RνR − (
yν L̄ H

†νR + h.c.
)
. (5.10)

the running is further modified. For simplicity, we introduce one right handed neu-
trino, and its mass is determined by the seesaw mechanism [14–18]:

y2νv
2

2MR
= mν

2
, with v � 246GeV. (5.11)

In the figure, we take mν = 0.1 eV as a reference value. We show the running of λ
in the SM with singlet scalar and right handed neutrino in Fig. 5.6.

5.2 Weakly Interacting Dark Matter

The dark matter can be charged under the SM SU (2)L gauge interaction. This class
of dark matter is often called Minimal dark matter [19–24]. Here we examine the
impact on the Higgs potential in this class of dark matter models.

In order to make the dark matter neutral, we should assign the hypercharge Y =
(integer or half integer) depending on SU (2)L representation nL = (even or odd).
Among them, Y �= 0 is already excluded by the direct detection experiment due to
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Fig. 5.6 The running of λ in
the SM with singlet scalar
and right handed neutrino.
This figure is taken from
Ref. [31]
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the exchange of the Z boson.1 Therefore, we only consider Y = 0 dark matter with
nL = 3, 5, . . ..

First, let us consider scalar darkmatter X whose SU (2)L representation is 3, 5, . . .
and hypercharge is zero. Under the assumption of Z2 symmetry, the general scalar
potential is written as

V = − μ2�†� + λ(�†�)2 + M2
X X

†X + λX |X†X |2
+ κ|X†X ||�†�| + κ′(X†T a

X X)(�†T a
��)

+ λ′
X (X†T a

X X)2 + λ′′
X (X†T a

X T
b
X X)2 + · · · . (5.12)

The running of λ is modified by scalar couplings κ and κ′. Moreover, for the case
of nL = 5, 7, . . ., the scalar quartic coupling of the dark matter hits the Landau pole
much below the Planck scale even if we take scalar coupling to be zero at μ = MDM,
see Table5.1. Since the one-loop correction to the scalar coupling depends on the
charge to the fourth power, the position of the Landau pole is significantly lower for
higher representation of SU (2)L .

1The exception is doublet and Y = 1/2 scalar dark matter. In this case, we can write the dimension
4 operator which splits the real and imaginary component of the dark matter. This model is called
Inert Higgs, which we do not consider in the thesis.
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Table 5.1 The positions of the Landau pole in quintet and septet dark matter models when we take
all new scalar couplings to be zero at μ = MDM. The poles calculating using the one-loop RGE
of the gauge couplings are also shown. In the case of the quintet dark matter, the SU (2)L gauge
coupling is asymptotic free

(nX , YX ) Landau pole (GeV) �gY
(GeV) �g2 (GeV)

(5, real) 9.5 × 1011 (MDM/100GeV)1.38 9.6 × 1042 –

(7, real) 1.0 × 106 (MDM/100GeV)1.13 9.6 × 1042 1.3 × 1056

DM

Real quintet

DM

DM''

Real septet

2 4 6 8 10 12 14
0.0

0.5
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3 4 5 6
0.0
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Log10 GeV Log10 GeV

Fig. 5.7 The typical behavior of the running couplings in quintet and septet dark matter. We take
MDM = 100GeV. One can see that the Landau pole indeed exists
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Fig. 5.8 The position of the Landau pole as a function of the dark matter mass MDM

In Fig. 5.7, we plot the typical behavior of scalar couplings in quintet and septet
scalar darkmatters as functions of renormalization scaleμ.Wecan see that theLandau
pole actually appears below the Planck scale. As shown in Fig. 5.8, the position of
Landau pole is almost proportional to the mass of the dark matter. The derivation
from proportional relation comes from the running of gauge coupling g2.

We would like to emphasize that the position of the Landau pole from scalar
coupling is much smaller than that from gauge couplings �gi ,



72 5 Dark Matter and Higgs Potential

�gi = MX exp

(
1

2Bi

1

g2i (MX )

)

= MX

(
Mt

MX

)Bi,SM/Bi

exp

(
1

2Bi

1

g2i (Mt )

)
. (5.13)

Here i = Y, 2 and Bi means the coefficient of the one-loop beta function. We note
that Eq. (5.13) is valid only if all other couplings are perturbative up to �gi .

Next, we consider the real triplet scalar dark matter model. In this case, the model
can be valid up to the Planck scale. The scalar potential is written as

V = −1

2
M2

H |H |2 + 1

2
M2

DM,3

(
XT X

)
+ λ

(
|H |2

)2 + λDM,3

(
XT X

)2 + κ3 |H |2
(
XT X

)

(5.14)

The contribution to the one-loop effective potential from the dark matter is given by

�Vtrplet(φ) = 3mDM,3(φ)4

64π2

(
ln

(
mDM,3(φ)2

φ2

)
− 3

2

)
(5.15)

where mDM,3 is the effective mass of the triplet dark matter:

mDM,3(φ) =
√
M2

DM,3 + κ3(φ)e2�(φ)φ2. (5.16)

In the left panel of the Fig. 5.9, we plot the typical running of scalar couplings.
We can see that all couplings remain perturbative up to the Planck scale. The right
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Fig. 5.9 Left The running of the couplings in the triplet dark matter model. Right The condi-
tions λmin = 0, μmin = 1010 GeV, μmin = 1012 GeV, μmin = 1014 GeV and μmin = 1016 GeV are
plotted. λDM(MDM) = 0.1 is taken
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Fig. 5.10 The bare Higgs mass as a function of � in the real triplet dark matter model. We take
κ = 0 and 0.4 in the left and right panels, respectively

panel shows the stability of the Higgs potential in Mt -κ3 plane. The dashed black
line corresponds to the situation where MPP is realized.

The one loop bare Higgs mass in this model is given by

m2
B |1−loop

�2/16π2
= −

(
6λ + 3

4
g2Y + 9

4
g22 − 6y2t + 3

2
κ3

)
. (5.17)

We plot the Eq. (5.17) as a function of � in the Fig. 5.10. In the left panel, we
take κ(MDM) = 0 while κ(MDM) = 0.4 in the right panel. The width of blue band
represents the uncertainty of the top mass Mt .

Finally, let us move to the triplet and quintet fermion dark matter scenarios.
The triplet Majorana fermion2 is often studied in the text of supersymmetry [25]
although our picture is different from supersymmetric scenario. The superpartner of
W boson, wino, becomes the lightest supersymmetric particle in anomaly mediated
supersymmetry breaking model [26, 27].

On the other hand, the advantage of the quintet fermion dark matter is its stability
[20]. In the SM with quintet fermion, we can not write the operator describing dark
matter decay whose dimension is less than 6. Therefore, the dark matter is stable
without introducing ad hoc Z2 symmetry.3

By assuming the thermal production of the dark matter, we obtain the dark matter
mass as [21, 25]

Mχ �
{
2.8TeV (for nχ = 3),

10 TeV (for nχ = 5).
(5.18)

2We review the quantization of Majorana field in Appendix E.
3In the case of the scalar dark matter, we can not obtain this type of the dark matter even if nL = 7
[28, 29].
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Fig. 5.11 Left The running of the effective coupling λeff in the triplet dark matter model for
Mt = 171.9GeV. Right The running of the couplings in the triplet dark matter model

Fig. 5.12 The bare Higgs
mass as a function of � in
the triplet Majorana dark
matter model
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At first sight, it seems that the dark matter does not affect the running of λ because
there is no coupling between the dark matter and Higgs. However, through the mod-
ification of the beta function of g2, the Higgs potential tends to be stabilized. As
shown in the left panel of the Fig. 5.11, if Mt = 171.9GeV, the degenerate vacuum
appears at μ = 2.6 × 1016 GeV. The MPP predicts this situation. The right panel
of the Fig. 5.11, dimensionless couplings are plotted as functions of scale μ for
Mt = 171.9GeV. In the Fig. 5.12, we also show the bare Higgs mass as a function
of �. We can see that the bare mass vanishes around the string/Planck scale.

In the case of the quintet dark matter, the Higgs potential becomes more stable
than the triplet case due to the large SU (2)L charge. As a result, the degenerate
vacuum appears at μ = 1.2 × 1011 GeV for Mt = 175GeV as in the left panel of
the Fig. 5.13. We show the runnings of the other couplings in the right panel of the
Fig. 5.13. The bare Higgs mass as the function of � can be seen in the Fig. 5.14.
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Fig. 5.13 Left The running of the effective coupling λeff in the quintet dark matter model for
Mt = 175GeV. Right The running of the couplings in the quintet dark matter model

Fig. 5.14 The bare Higgs
mass as a function of � in
the quintet Majorana dark
matter model
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To summarize, we have

(Mt ,�MPP) =
{(

171.9, 2.6 × 1016
)
GeV for nχ = 3,(

175.0, 1.2 × 1011
)
GeV for nχ = 5.

(5.19)

It is very interesting that the only triplet representation is allowed by requiring the
perturbativity and criticality around the Planck scale.

The most plausible way to detect the weakly interacting dark matter is indirect
detection. In the current universe, the cosmic ray may be produced by the pair anni-
hilation of the dark matter in the, for example, center of our galaxy. Therefore, by
examining the spectrum of the cosmic ray, we can get the hint of the dark mat-
ter. Thanks to rather large gauge interaction of the dark matter, we expect that the
dark matter originated cosmic ray is detectable in the future observation. Cherenkov
Telescope Array(CTA) [30] can probe these simple dark matter models.
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Chapter 6
Summary

In this thesis, we have considered Higgs potential and naturalness problem in light
of the LHC result, the discovery of Higgs boson.

It is well known that the Higgs mass suffers from the quadratic divergence, that
means that its mass highly depends on ultraviolet physics. This was primary moti-
vation to look for the new physics beyond the SM, which is one of the target of the
LHC. Because the largest contribution to the bare Higgs mass is given by the top
quark loop, it is expected that a top partner exists and cancels the contribution from
top quark. In order to obtain sufficiently cancelation, the mass of a top partner is the
same order of magnitude as that of the top quark. However, contrary to this naive
expectation, the LHC does not find any colored new particle up to 1 TeV. The above
situation suggests that it is good time to be free from the conventional naturalness
argument, and consider the scenario where the SM is valid up to very high scale such
as the string/Planck scale.

Because the last parameter of the SM is determined, we can extrapolate the SM
up to very high scale such as string/Planck scale. In Chap.2, we have estimated bare
parameters as functions of cutoff scale �. Especially, the quadratic divergent part
of bare Higgs mass is calculated. We have shown that there is triple coincidence:
Higgs self coupling, its beta function and bare Higgs mass all become zero around
string/Planck scale. Probably, this fact indicates that the physics in the electroweak
scale is directly connected to that in the Planck scale.

In Chap.3, as an concrete example of this connection, we consider the Higgs
inflation. First, we have explained why the Higgs inflation is impossible in the pure
SM.Then,we have introduced the non-minimal coupling between theHiggs field and
gravity. We have shown that, taking into account the running effect, the prediction
of the conventional Higgs inflation can drastically change. We also have discussed
the ambiguity of the renormalization scheme in the Higgs inflation.

In Chap.4, we have investigated a solution to the naturalness problem without
relying on TeV scale new physics. Starting from multi-local action, the coupling
constant in the theory is no longer constant, but becomes dynamical variable. Using

© Springer Nature Singapore Pte Ltd. 2017
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80 6 Summary

this mechanism. We have explained the small cosmological constant, Higgs mass
and CP violating θ parameter in QCD.

In Chap.5, we have added the dark matter particle to the SM, and examined its
impact on theHiggs potential. It has been found that, ifwe require thermally produced
dark matter and the flat potential around the string/Planck scale as in multiple point
criticality principle, the allowed SU (2)L charges of the dark matter are singlet and
triplet for scalar, and triplet for fermion. These models can be detectable in the future
direct and/or indirect experiment.

http://dx.doi.org/10.1007/978-981-10-3418-3_5


Appendix A—Convention

The metric in the flat space is taken as

ημν =

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠ , (A.1)

In the thesis, we adopt the chiral representation

γμ =
(
0 σμ

σ̄μ 0

)
, σμ = (1,σi ), σ̄μ = (1,−σi ),

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.2)

as a concrete representation of the Clifford algebra,

{γμ, γν} = 2gμν . (A.3)

This representation diagonalizes γ5 which I will define below.
We focus on the four dimensional field theory, and, in the four dimension the irre-

ducible representation of the spinor field is the Weyl spinor, which is the eigenvector
of

γ5 := iγ0γ1γ2γ3 =
(−1 0

0 1

)
. (A.4)

The left and right handed spinor have −1 and 1 eigenvalues, respectively.

© Springer Nature Singapore Pte Ltd. 2017
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The Lagrangian of the SM is given by

LSM = − 1

4
GAμνGA

μν − 1

4
WaμνWa

μν − 1

4
BμνBμν

+ ∣∣DμH
∣∣2 + μ2 |H |2 − λ

(|H |2)2

+ q̄ i i/Dqi + ū R
i i/DuiR + d̄R

i
i/Ddi

R + l̄ i i/Dli + ēR
i i/DeiR

− (yi ju q̄
i H̃u j

R + h.c.) − (yi jd q̄
i Hd j

R + h.c.)) − (yi jl l̄
i He j

R + h.c.). (A.5)

Here

GA
μν = ∂μG

A
ν − ∂νG

A
μ + g3 f

ABCGB
μG

C
μ

Wa
μν = ∂μW

a
ν − ∂νW

a
μ + g2ε

abcGb
μG

c
μ

Bμν = ∂μBν − ∂νBμ (A.6)

are the field strength of SU (3)C , SU (2)L and U (1)Y , respectively. A = 1, 2, . . . 8
and a = 1, 2, 3 are indexes of the adjoint representation of SU (3)C and SU (2)L .
f ABC is the SU (3)C structure constant, and εabc is the SU (2)L structure constant.
g3, g2, gY are the gauge couplings of each group. The covariant derivative Dμ acts
on the field X whose SU (3)C × SU (2)L ×U (1)Y representation is (r3, r2, r1) is as
follows:

DμX = (∂μ − ig3G
A
μT

A
r3 − ig2W

a
μT

a
r2 − igY Bμr1)X. (A.7)

Here Tr is the generator corresponding to the representation r . For example, Tr is
Gell-Mann matrix λA if X is fundamental representation of SU (3), and Tr is Pauli
matrix σa/2 if X is fundamental representation of SU (2). The definition of H̃ is

H̃ = iσ2H † =
(

H 0†

−H−

)
. (A.8)

The field contents in the SM is summarized in TableA.1.
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Table A.1 The field contents in the SM

Name Field SU (3)C SU (2)L U (1)Y spin

Left handed quark qi =
(uL , dL )i

3 2 1
6

1
2

Right handed quark uRi 3 1 2
3

1
2

dRi 3 1 − 1
3

1
2

Left handed lepton li =
(νL , eL )i

1 2 − 1
2

1
2

Right handed lepton eRi 1 1 −1 1
2

Higgs H =
(H+, H0)

1 2 1
2 0

Gluon Gμ 8 1 0 1

SU (2)L gauge boson Wμ 1 3 0 1

U (1)Y gauge boson Bμ 1 1 0 1



Appendix B—Renormalization Group Equations

The beta functions of models that we consider in the thesis are listed. We have used
the results of Refs. [1–4] to derive the equations below.

• SM

dgY
dt

= 1

16π2
41

6
g3Y + g3Y

(16π2)2

(
199

18
g2Y + 9

2
g22 + 44

3
g23 − 17

6
y2t

)
,

dg2
dt

= − 1

16π2
19

6
g32 + g32

(16π2)2

(
3

2
g2Y + 35

6
g22 + 12g23 − 3

2
y2t

)
,

dg3
dt

= − 7

16π2
g33 + g33

(16π2)2

(
11

6
g2Y + 9

2
g22 − 26g23 − 2y2t

)
,

dyt
dt

= yt
16π2

(
9

2
y2t − 17

12
g2Y − 9

4
g22 − 8g23

)
+ yt

(16π2)2

(
− 12y4t + 6λ2 − 12λy2t

+ 131

16
g2Y y

2
t + 225

16
g22 y

2
t + 36g23 y

2
t

+ 1187

216
g4Y − 23

4
g42 − 108g43 − 3

4
g2Y g22 + 9g22g23 + 19

9
g23g2Y

)
,

dλ

dt
= 1

16π2

(
24λ2 − 3g2Y λ − 9g22λ + 3

8
g4Y + 3

4
g2Y g22 + 9

8
g42 + 12λy2t − 6y4t

)

+ 1

(16π2)2

{
− 312λ3 + 36λ2(g2Y + 3g22) − λ

(
− 629

24
g4Y − 39

4
g2Y g22 + 73

8
g42

)

+ 305

16
g62 − 289

48
g2Y g42 − 559

48
g4Y g22 − 379

48
g6Y − 32g23 y

4
t − 8

3
g2Y y

4
t − 9

4
g42 y

2
t

+ λy2t

(
85

6
g2Y + 45

2
g22 + 80g23

)
+ g2Y y

2
t

(
− 19

4
g2Y + 21

2
g22

)

− 144λ2y2t − 3λy4t + 30y6t

}
, (B.1)

where t = logμ.
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• SM with N singlet real scalar fields

dgY

dt
= 1

16π2

41

6
g3Y + g3Y

(16π2)2

(
199

18
g2Y + 9

2
g22 + 44

3
g23 − 17

6
y2t

)
,

dg2

dt
= − 1

16π2

19

6
g32 + g32

(16π2)2

(
3

2
g2Y + 35

6
g22 + 12g23 − 3

2
y2t

)
,

dg3

dt
= − 7

16π2 g33 + g33
(16π2)2

(
11

6
g2Y + 9

2
g22 − 26g23 − 2y2t

)
,

dyt
dt

= yt
16π2

(
9

2
y2t − 17

12
g2Y − 9

4
g22 − 8g23

)
+ yt

(16π2)2

(
− 12y4t + 6λ2 + 1

4
Nκ2 − 12λy2t

+ 131

16
g2Y y

2
t + 225

16
g22 y

2
t + 36g23 y

2
t + 1187

216
g4Y − 23

4
g42 − 108g43 − 3

4
g2Y g22 + 9g22g

2
3 + 19

9
g23g

2
Y

)
,

dλ

dt
= 1

16π2

(
1

2
Nκ2 + 24λ2 − 3g2Yλ − 9g22λ + 3

8
g4Y + 3

4
g2Y g22 + 9

8
g42 + 12λy2t − 6y4t

)

+ 1

(16π2)2

{
− 2Nκ3 − 5Nκ2λ − 312λ3 + 36λ2(g2Y + 3g22)

− λ

(
− 629

24
g4Y − 39

4
g2Y g22 + 73

8
g42

)
+ 305

16
g62 − 289

48
g2Y g42 − 559

48
g4Y g22

− 379

48
g6Y − 32g23 y

4
t − 8

3
g2Y y

4
t − 9

4
g42 y

2
t

+ λy2t

(
85

6
g2Y + 45

2
g22 + 80g23

)
+ g2Y y

2
t

(
− 19

4
g2Y + 21

2
g22

)

− 144λ2 y2t − 3λy4t + 30y6t

}
,

dκ

dt
= κ

16π2

(
12λ + ρ + N − 1

3
ρ + 4κ + 6y2t − 3

2
g2Y − 9

2
g22

)

+ κ

(16π2)2

{
−

(
N

2
+ 10

)
κ2 − 72κλ − 60λ2 − (2N + 4)κρ −

(
5N + 10

18

)
ρ2

− y2t (12κ + 72λ) − 27

2
y4t + g2Y (κ + 24λ) + g22(3κ + 72λ) + y2t

(
85

12
g2Y + 45

4
g22 + 40g23

)

+ 557

48
g4Y − 145

16
g42 + 15

8
g2Y g22

}
,

dρ

dt
= 1

16π2

(
3ρ2 + N − 1

3
ρ2 + 12κ2

)
+ 1

(16π2)2

{
− 3N + 14

3
ρ3 − 20κ2ρ − 48κ3

− 72κ2 y2t + 24κ2g2Y + 72κ2g22

}
, (B.2)

• SM with Majorana triplet scalar field

d�

dt
= 1

(4π)2

(
9

4
g22 + 3

4
g2Y − 3y2t

)
, (B.3)

dgY

dt
= g3Y

(4π)2

(
41

6
+ η nχ

4

3
Y 2

χ

)

+ g3Y
(4π)4

{(
199

18
+ 4η nχY

4
χ

)
g2Y +

(
9

2
+ 4ηY 2

χCn

)
g22 + 44

3
g23 − 17

6
y2t

}
,

dg2

dt
= g32

(4π)2

(
− 19

6
+ η

4

3
Sn

)
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+ g32
(4π)4

{(
3

2
+ η4Y 2

χ Sn

)
g2Y +

(
35

6
+ η

40

3
Sn + η4CnSn

)
g22 + 12g23 − 3

2
y2t

}
,

dg3

dt
= − 7

(4π)2
g33 + g33

(4π)4

(
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6
g2Y + 9

2
g22 − 26g23 − 2y2t

)
,

dyt
dt
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dt
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16π2
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ηSn

)
g42g

2
Y −

(
559

48
+ 4

3
η nχY

2
χ

)
g22g

4
Y

−
(
379

48
+ 4

3
nχY

2
χ

)
g6Y

+
(
85

6
g2Y + 45

2
g22 + 80g23

)
λy2t + g2Y y

2
t

(
21

2
g22 − 19

4
g2Y

)
− 9

4
g42 y

2
t − 8

3
g2Y y

4
t − 32g23 y

4
t

− 144λ2 y2t − 3λy4t + 30y6t

}
. (B.4)

η = 1, 1
2 correspond to Dirac and Weyl spinor, respectively.

• SM with a real triplet scalar field

dg2

dt
= − g32

(4π)2

17

6
, (B.5)

dλ

dt
= 1

16π2

(
λ

(
24λ − 9g22 − 3g2Y + 12y2t

) + 3

2
κ2 + 3

4
g2Y g22 + 9

8
g42 + 3

8
g4Y − 6y4t

)
, (B.6)

dλDM

dt
= 1

16π2

(
22λ2

DM + 2κ2 − 24g22λDM + 12g42
)
, (B.7)

dκ

dt
= 1

16π2

(
4κ2 + 12κλ + 10κλDM + 6y2t κ − 33

2
g22κ − 3

2
g2Yκ + 6g42

)
. (B.8)

• SM with a real quintet scalar field

dλ

dt
= 1

16π2

(
+ 24λ2 − 6y4t + 3

8
g4Y + 9

8
g42 + 3

4
g2Y g22 + 5

2
κ2 + 12λy2t − 3λg2Y − 9λg22

)
,

dλX

dt
= 1

16π2

(
+ 26λ2

X + 108g42 − 72λX g22 + 2κ2
)

,

dκ

dt
= 1

16π2

(
+ 18g42 + 12κλ + 14κλX + 6y2t κ − 3

2
κg2Y − 81

2
κg22 + 4κ2

)
. (B.9)
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• SM with a real septet scalar field1

dλ

dt
= 1

16π2

(
+ 24λ2 − 6y4t + 9

8
g42 + 3

8
g4Y + 12λy2t − 3λg2Y − 9λg22 + 3

4
g2Y g22 + 7

2
κ2

)
,

dλX

dt
= 1

16π2

( + 30λ2
X + 2448λXλ′′

X + 51840λ′′2
X − 144λX g22 + 2κ2),

dλ′′
X

dt
= 1

16π2

( + 6g42 + 1530λ′′2
X + 24λXλ′′

X − 144λ′′
X g22

)
,

dκ

dt
= 1

16π2

(
+ 36g42 + 12κλ + 18κλX + 6y2t κ − 3

2
κg2Y − 153

2
κg22 + 4κ2 + 1224κλ′′

X

)
. (B.10)
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Appendix C—Brief Review of Inflation

When a scalar dominates the energy density of the universe, Friedmann equation
becomes

(
ȧ

a

)2

= V (φ) + 1
2 φ̇

2

3M2
P

. (C.1)

If the potential of φ is flat enough, φ̇2 term can be neglected and V (φ) becomes
constant, then it is found that

a ∝ exp

(√
V

3MP

)
, (C.2)

which indicates the exponentially expansion of the universe.
The primordial quantum fluctuation of an inflation induces the observed temper-

ature perturbation in the cosmic microwave background. The power spectrum of
scalar and tensor perturbation is parametrized as

PR = As

(
k

k∗

)ns−1+ 1
2

dns
d ln k ln

k
k∗ + 1

3!
d2ns
d ln k2

(
ln k

k∗
)2+···

, Pt = At

(
k

k∗

)nt+ 1
2

dnt
d ln k ln

k
k∗ +···

.

(C.3)

As and At are the overall amplitudes, ns and nt are the spectral index, dns/d ln k
and dnt/d ln k are the running of the spectral index, and so on. The expansion of the
universe during the inflation is characterized by e-folding number N :

N∗ =
∫ tend

t∗
dt H =

∫ ϕend

ϕ∗

dϕ

ϕ̇
H = 1

M2
P

∫ ϕ∗

ϕend

V

Vϕ
dϕ = 1

MP

∫ ϕ∗

ϕend

dϕ√
2ε

. (C.4)

The N∗ corresponding to the current cosmic microwave background fluctuation is
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50 < N∗ < 60. (C.5)

In the slow roll approximation, the amplitude of scalar and tensor power spectrums
are given by

As = V

24π2M4
Pε

, At = 2V

3π2M4
P

, r = At

As
= 16ε, (C.6)

ns = 1 + 2η − 6ε, nt = −2ε,

dns
d ln k

= 16εη − 24ε2 − 2ξ2V ,
dnt
d ln k

= −4εη + 8ε2,

d2ns
d ln k2

= −192ε3 + 192ε2η − 32εη2

− 24εξ2 + 2ηξ2 + 2�3. (C.7)

The current Planck 2015 data constrains the parameter space,

As � 2.2 × 10−9, 0.954 < ns < 0.980,

r < 0.168, −0.03 <
dns
d ln k

< 0.007. (C.8)

Here we adopt the Planck TT+low P data to obtain conservative bound.



Appendix D—Strong CP Problem

D.1 θ Term in Lagrangian

The following term,

θ

32π2

∫
d4x Fa

μν F̃
aμν, (D.1)

is consistent with gauge symmetry and Lorentz symmetry in the action. At first
glance, this term is not important because this is the total derivative,

Tr
(
Fμν F̃

μν
)

= Tr
(
(2∂μAν + ig[Aμ, Aν])F̃μν

)

= Tr
(
(2∂μAν + Aν∂μ)F̃

μν
)

= Tr
(
(∂μAν)F̃

μν + ∂μ(Aν F̃
μν)

)

= Tr
(
εμνρσ(∂μAν)(∂ρAσ + igAρAσ) + ∂μ(Aν F̃

μν)
)

= Tr

(
εμνρσ∂μ(Aν∂ρAσ + 1

3
igAν AρAσ) + ∂μ(Aν F̃

μν)

)

= Tr

(
εμνρσ∂μ(2Aν∂ρAσ + 4

3
igAν AρAσ)

)
, (D.2)

where have used Bianchi identity,

[Dμ, F̃
μν] = εμνρσ[Dμ, Fρσ]

= 2

ig
εμνρσ[Dμ, DρDσ]

= 0, (D.3)
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in the second line. Nevertheless, θ term has physical meaning. It contributes the
neutron electric dipole moment because θ term induces CP violating nucleon-pion
coupling. The value of θ is constrained as [1]

θ < 10−10. (D.4)

Here we note that the definition of the electric dipole moment of the neutron dn is
given by

L � − i

2
dnn̄σμνγ5Fμνn, (D.5)

where n is the neutron field, and dn is

dn � |θ|em
2
π

m3
n

. (D.6)

D.2 θ = 0 or π?

θ = π does not give complex phase, and does not violate CP. Therefore the measure-
ment of the neutron electric dipole moment does not kill the possibility of θ = π.
The difference between θ = 0 and π appears in the quark mass term. After rotating
out θ by redefinition of the up quark field, we have

−muŪU − md D̄D, for θ = 0,

muŪU − md D̄D, for θ = π, (D.7)

as the quark mass term in the Lagrangian. Here both of mu and md are real positive.
If θ = 0, the current algebra tells us

∂μ j
5μa = (mu + md) q̄γ5τ aq, (D.8)

and the current associated with the broken symmetry couples with the Numbu-
Goldstone boson,

〈0| j5μa|πb〉 = fπ p
μδab, (D.9)

from which we have

m2
π = (mu + md)

〈0|q̄γ5τ aq|πa〉
fπ

∼ (mu + md)�QCD. (D.10)
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Similarly, the following formulas are derived.

m2
π0 = B(mu + md),

m2
π± = B(mu + md) + �em

m2
K 0 = B(md + ms),

m2
K± = B(mu + ms) + �em, (D.11)

where B is the order of �QCD, and �em represents the electromagnetic correction.
We can obtain the ratio of the quark mass from Eq. (D.11) [2].

mu

md
= 2m2

π0 − m2
π± + m2

K± − m2
K 0

m2
K 0 − m2

K± + m2
π±

� 0.56. (D.12)

However, for θ = π, we can derive the same formula with mu → −mu , and
therefore the prediction is

2m2
π0 − m2

π± + m2
K± − m2

K 0

m2
K 0 − m2

K± + m2
π±

< 0, (D.13)

which apparently contradicts an experiment.

D.3 Possibility of the Massless up Quark

Let us consider the Yukawa sector of the quarks in the SM Lagrangian:

yi ju Q̄i H̃URj + yi jd Q̄i H̃ DRj + h.c. . (D.14)

What happens if the up quarkmass is equal to zero? In this case, the upYukawamatrix
yi ju is the rank-2matrix, and yi ju URj does not span the three dimensional family space.
The orthogonal vector is nothing but the mass eigenstate of the up quark, that is, the
up quark field does not appear in the Yukawa sector in the Lagrangian. Then, we can
easily see that an extra symmetry appears, the rotation of up quark field. However,
this symmetry is violated at the quantum level by an SU (3)C anomaly, and hence
we can take θ = 0 by the rotation of the fields.

By the particle data group [3], the recent studies which combines the lattice
data and chiral perturbation in order to account for the isospin breaking report the
following value of up and down quark masses:

mu = 2.15 ± 0.15MeV, md = 4.70 ± 0.20MeV. (D.15)



94 Appendix D—Strong CP Problem

Up to now, the lattice can only done in isospin conserving limit, mu = md . In order
to settle the situation, the improvement of the lattice simulation is desired.

However, even if this is a solution to the strong CP problem, it is unclear whether
yu = 0 itself is natural or not, and needs mechanism to explain yu = 0 in my opinion.

D.4 Vacuum Energy Dependence of θ

In the discussion in Chap. 4, it is necessity to calculate the θ dependence of the
vacuum energy in QCD. The estimation of the vacuum energy dependence of θ is
similar to that of the axion [4–6]. The dependence comes from the quark mass term,

Lm � − cos θ(muŪU + md D̄D), −(Ū iγ5U + D̄iγ5D), (D.16)

in the basis where θ term is removed. We note that Ū iγ5U, D̄iγ5D terms are P odd
and CP odd. Due to the chiral symmetry breaking, the quark bilinear condensate
appears:

〈ŪU 〉 = 〈D̄D〉 = O(�3
QCD). (D.17)

On the other hand, P,CP odd terms are not have VEV,2

〈Ū iγ5U 〉 = 〈D̄iγ5D〉 = 0. (D.18)

Then, the energy density coming from the quark mass term is

ε ∼ (mu + md)�
3
QCD cos θ, (D.19)

and we can understand the θ dependence.
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Appendix E—Quantization of Majorana Field

The quantization of Majorana field is reviewed [1]. We first introduce the concept of
the charge conjugation, which corresponds to exchange of the particle and antipar-
ticle. Naively, one imagine that the field describing the antiparticle of ψ is written
by ψ∗. However, this is conflict with the property of the Dirac field under Lorentz
transformation which is

ψ → ei Sμνω
μν

ψ Sμν = i

4
[γμ, γν] (E.1)

In order to reconcile this discrepancy, the definition of the charge conjugation should
be

ψc = Cψ∗ = iγ2ψ∗. (E.2)

The pre-factor is chosen so that (ψc)c = ψ is satisfied. If ψ is equal to its conjugate,

ψc = ψ, (E.3)

then ψ is called the Majorana fermion.
Then, let us consider the plain wave expansion of the field ψ. Starting from Dirac

equation,
(i/∂ − m)ψ = 0, (E.4)

we denote the positive energy solution and negative energy solution as us(p)e−i p·x
and vs(p)e−i p·x , respectively. Here s denotes the spin degrees of freedom. On the
other hand, the Hamltonian density of the spinor field is

H = ψ†(−iγ0�γ · �∇ + mγ0)ψ, (E.5)

fromwhichwe can see that H = −iγ0�γ · �∇+mγ0 gives the one particle Hamiltonian.
The eigenfunctions of H are given by following solutions:
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Hus(p)e−i p·x = (| �p|2 + m2)us(p)e−i p·x ,

Hvs(p)e−i p·x = −(| �p|2 + m2)vs(p)e−i p·x . (E.6)

The complete set is formed by these eigenfunction, and ψ can be expanded as

ψ =
∫

d3k

(2π)3

1

2k0

∑

s

(
aspu

s(p)e−i p·x + bs†p vs(p)eip·x
)
,

ψc =
∫

d3k

(2π)3

1

2k0

∑

s

(
as†p (Cus∗(p))eip·x + bsp(Cvs∗(p))e−i p·x) . (E.7)

The Majorana condition gives the relation bs†p vs(p) = as†p (Cus∗(p)).
Let us quantize the field by imposing the equal time anticommutation relation,

{ψ(�x),ψ†(�y)} = δ(3)(�x − �y), (E.8)

or equivalently

{asp, ar†q } = (2π)3δ(3)( �p − �q)δsr . (E.9)

In terms of creation and annihilation operators, the Hamiltonian is easily diagonal-
ized,

∫
d3x H =

∫
d3 p

(2π)3

∑

s

(| �p|2 + m2)as†p a
s
p, (E.10)

and therefore Fock space can be constructed.
Next we derive the Feynman rule of the Majorana fermion, which we can infer

from the action:

S =
∫

d4x
(
ψ̄(i/∂ − m)ψ

)

=
∫

d4x
(
ψT iγ2γ0(i/∂ − m)ψ

) =
∫

d4x
(
ψ̄(i/∂ − m)iγ2γ0ψ̄T .

)
(E.11)

The propagator of the Majorana fermion is given by

〈ψ̄ψ〉 =
∫

d4 p

(2π)4

i

/p − m
e−i p·x , 〈ψTψ〉 =

∫
d4 p

(2π)4

i

/p − m
(−iγ2γ0)e−i p·x ,

〈ψ̄ψ̄T 〉 =
∫

d4 p

(2π)4
(−iγ2γ0)

i

/p − m
e−i p·x . (E.12)

We comment on a possible concrete example. In the case of Majorana neutrino,
the Majorana field is
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νM,L = νL + νc
L√

2
νM,R = νR + νc

R√
2

. (E.13)

In the case of the SU (2)L triplet and quintet Majorana fermion, we also need the
quantization of Majorana field in order to calculate the annihilation cross section.
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Appendix F—The Effect of the Principle Value

Here we evaluate the principle value integral:

PV
∫ +∞

−∞
dE

E
〈a|E;�〉〈E;�|ε〉. (F.1)

This Appendix is taken from Ref. [1]. The WKB solution of 〈a|E;�〉 is given by

〈a|E;�〉 = MP

√
a

pcl
exp

(
i
∫ a

da′ pcl(a′)
)

, (F.2)

where

pcl(a) = MPa
2

√

2

(
ρ(a)

6
− E

a3

)
:= MPa

2

√
ρ̃(a)

3
. (F.3)

Then, for a sufficiently large value of a, we have

∫ a

aM
da pcl (a) = MP

3
3
2

⎛

⎜⎝a3
√

ρ̃(a) − a3M
√

ρ̃(aM ) + M − E√
�

log

⎡

⎢⎣
a
3
2 (� + √

�ρ̃(a))

a
3
2
M (� + √

�ρ̃(aM ))

⎤

⎥⎦

⎞

⎟⎠

:= MPa
3

3
3
2

g(�, E, a) �
a�aM

MPa
3

3
3
2

√
ρ̃(a). (F.4)

By substituting Eqs. (F.2) and (F.4) to Eq. (F.1), we obtain

PV
∫ ∞

−∞
dE

E
MP

√
a

pcl
exp

(
i
MPa3

3
3
2

√
ρ̃(a)

)
〈E;�|ε〉. (F.5)

By expanding the exponent around E = 0, we have
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MP

√
a

pcl
exp

(
i
MPa

3

3
3
2

√
ρ(a) − i

MP E

3
3
2
√

ρ(a)

+ O(E2)

)
= 〈a|0; �〉 exp

(
−i

MP E

3
3
2
√

ρ(a)

+ O(E2)

)
.

(F.6)

Therefore, only the region,

|E | �
√

ρ(a)

MP
∼

√
�

MP
, (F.7)

gives nonzero contribution to the integral. Hence, it is self-consistent to show � = 0
by using only the zero energy eigenstate |0〉.
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